Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 182(3): 734-743.e5, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32643603

RESUMEN

COVID-19, caused by SARS-CoV-2, is a virulent pneumonia, with >4,000,000 confirmed cases worldwide and >290,000 deaths as of May 15, 2020. It is critical that vaccines and therapeutics be developed very rapidly. Mice, the ideal animal for assessing such interventions, are resistant to SARS-CoV-2. Here, we overcome this difficulty by exogenous delivery of human ACE2 with a replication-deficient adenovirus (Ad5-hACE2). Ad5-hACE2-sensitized mice developed pneumonia characterized by weight loss, severe pulmonary pathology, and high-titer virus replication in lungs. Type I interferon, T cells, and, most importantly, signal transducer and activator of transcription 1 (STAT1) are critical for virus clearance and disease resolution in these mice. Ad5-hACE2-transduced mice enabled rapid assessments of a vaccine candidate, of human convalescent plasma, and of two antiviral therapies (poly I:C and remdesivir). In summary, we describe a murine model of broad and immediate utility to investigate COVID-19 pathogenesis and to evaluate new therapies and vaccines.


Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/prevención & control , Modelos Animales de Enfermedad , Pandemias/prevención & control , Neumonía Viral/patología , Neumonía Viral/prevención & control , Vacunación , Enzima Convertidora de Angiotensina 2 , Animales , COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/virología , Evaluación Preclínica de Medicamentos/métodos , Femenino , Humanos , Interferón gamma/genética , Interferón gamma/metabolismo , Pulmón/patología , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/virología , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , SARS-CoV-2 , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Organismos Libres de Patógenos Específicos , Transducción Genética , Células Vero , Carga Viral , Replicación Viral
2.
Proc Natl Acad Sci U S A ; 120(4): e2202820120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36652473

RESUMEN

Human coronavirus 229E (HCoV-229E) and NL63 (HCoV-NL63) are endemic causes of upper respiratory infections such as the "common cold" but may occasionally cause severe lower respiratory tract disease in the elderly and immunocompromised patients. There are no approved antiviral drugs or vaccines for these common cold coronaviruses (CCCoV). The recent emergence of COVID-19 and the possible cross-reactive antibody and T cell responses between these CCCoV and SARS-CoV-2 emphasize the need to develop experimental animal models for CCCoV. Mice are an ideal experimental animal model for such studies, but are resistant to HCoV-229E and HCoV-NL63 infections. Here, we generated 229E and NL63 mouse models by exogenous delivery of their receptors, human hAPN and hACE2 using replication-deficient adenoviruses (Ad5-hAPN and Ad5-hACE2), respectively. Ad5-hAPN- and Ad5-hACE2-sensitized IFNAR-/- and STAT1-/- mice developed pneumonia characterized by inflammatory cell infiltration with virus clearance occurring 7 d post infection. Ad5-hAPN- and Ad5-hACE2-sensitized mice generated virus-specific T cells and neutralizing antibodies after 229E or NL63 infection, respectively. Remdesivir and a vaccine candidate targeting spike protein of 229E and NL63 accelerated viral clearance of virus in these mice. 229E- and NL63-infected mice were partially protected from SARS-CoV-2 infection, likely mediated by cross-reactive T cell responses. Ad5-hAPN- and Ad5-hACE2-transduced mice are useful for studying pathogenesis and immune responses induced by HCoV-229E and HCoV-NL63 infections and for validation of broadly protective vaccines, antibodies, and therapeutics against human respiratory coronaviruses including SARS-CoV-2.


Asunto(s)
COVID-19 , Resfriado Común , Coronavirus Humano 229E , Coronavirus Humano NL63 , Humanos , Animales , Ratones , Anciano , SARS-CoV-2 , Protección Cruzada
3.
Genome Res ; 32(2): 228-241, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35064006

RESUMEN

The pathogenesis of COVID-19 is still elusive, which impedes disease progression prediction, differential diagnosis, and targeted therapy. Plasma cell-free RNAs (cfRNAs) carry unique information from human tissue and thus could point to resourceful solutions for pathogenesis and host-pathogen interactions. Here, we performed a comparative analysis of cfRNA profiles between COVID-19 patients and healthy donors using serial plasma. Analyses of the cfRNA landscape, potential gene regulatory mechanisms, dynamic changes in tRNA pools upon infection, and microbial communities were performed. A total of 380 cfRNA molecules were up-regulated in all COVID-19 patients, of which seven could serve as potential biomarkers (AUC > 0.85) with great sensitivity and specificity. Antiviral (NFKB1A, IFITM3, and IFI27) and neutrophil activation (S100A8, CD68, and CD63)-related genes exhibited decreased expression levels during treatment in COVID-19 patients, which is in accordance with the dynamically enhanced inflammatory response in COVID-19 patients. Noncoding RNAs, including some microRNAs (let 7 family) and long noncoding RNAs (GJA9-MYCBP) targeting interleukin (IL6/IL6R), were differentially expressed between COVID-19 patients and healthy donors, which accounts for the potential core mechanism of cytokine storm syndromes; the tRNA pools change significantly between the COVID-19 and healthy group, leading to the accumulation of SARS-CoV-2 biased codons, which facilitate SARS-CoV-2 replication. Finally, several pneumonia-related microorganisms were detected in the plasma of COVID-19 patients, raising the possibility of simultaneously monitoring immune response regulation and microbial communities using cfRNA analysis. This study fills the knowledge gap in the plasma cfRNA landscape of COVID-19 patients and offers insight into the potential mechanisms of cfRNAs to explain COVID-19 pathogenesis.


Asunto(s)
COVID-19 , Ácidos Nucleicos Libres de Células , ARN/sangre , COVID-19/sangre , COVID-19/genética , Ácidos Nucleicos Libres de Células/sangre , Síndrome de Liberación de Citoquinas , Humanos , SARS-CoV-2
4.
Immunity ; 44(6): 1379-91, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27287409

RESUMEN

Two zoonotic coronaviruses (CoVs)-SARS-CoV and MERS-CoV-have crossed species to cause severe human respiratory disease. Here, we showed that induction of airway memory CD4(+) T cells specific for a conserved epitope shared by SARS-CoV and MERS-CoV is a potential strategy for developing pan-coronavirus vaccines. Airway memory CD4(+) T cells differed phenotypically and functionally from lung-derived cells and were crucial for protection against both CoVs in mice. Protection was dependent on interferon-γ and required early induction of robust innate and virus-specific CD8(+) T cell responses. The conserved epitope was also recognized in SARS-CoV- and MERS-CoV-infected human leukocyte antigen DR2 and DR3 transgenic mice, indicating potential relevance in human populations. Additionally, this epitope was cross-protective between human and bat CoVs, the progenitors for many human CoVs. Vaccine strategies that induce airway memory CD4(+) T cells targeting conserved epitopes might have broad applicability in the context of new CoVs and other respiratory virus outbreaks.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Infecciones por Coronavirus/inmunología , Sistema Respiratorio/inmunología , Síndrome Respiratorio Agudo Grave/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Vacunas Virales/inmunología , Animales , Antígenos Virales/inmunología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/virología , Células Cultivadas , Reacciones Cruzadas , Epítopos de Linfocito T/inmunología , Humanos , Inmunidad , Memoria Inmunológica , Interferón gamma/metabolismo , Ratones , Ratones Endogámicos , Vacunación , Virión/inmunología
5.
J Immunol ; 208(8): 1989-1997, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35365567

RESUMEN

Regulatory T cells (Tregs) are critical for regulating immunopathogenic responses in a variety of infections, including infection of mice with JHM strain of mouse hepatitis virus (JHMV), a neurotropic coronavirus that causes immune-mediated demyelinating disease. Although virus-specific Tregs are known to mitigate disease in this infection by suppressing pathogenic effector T cell responses of the same specificity, it is unclear whether these virus-specific Tregs form memory populations and persist similar to their conventional T cell counterparts of the same epitope specificity. Using congenically labeled JHMV-specific Tregs, we found that virus-specific Tregs persist long-term after murine infection, through at least 180 d postinfection and stably maintain Foxp3 expression. We additionally demonstrate that these cells are better able to proliferate and inhibit virus-specific T cell responses postinfection than naive Tregs of the same specificity, further suggesting that these cells differentiate into memory Tregs upon encountering cognate Ag. Taken together, these data suggest that virus-specific Tregs are able to persist long-term in the absence of viral Ag as memory Tregs.


Asunto(s)
Infecciones por Coronavirus , Virus de la Hepatitis Murina , Animales , Antígenos Virales/química , Antígenos Virales/inmunología , Ratones , Linfocitos T Reguladores
6.
J Nat Prod ; 87(9): 2327-2334, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39258410

RESUMEN

Two sulfur-containing heterodimers of a cytochalasan and a macrolide, sucurchalasins A and B (1 and 2), and four known cytochalasan monomers (3-6), as well as four known macrolide derivatives (7-10), were obtained from the endophytic fungus Aspergillus spelaeus GDGJ-286. Sucurchalasins A and B (1 and 2) are the first cytochalasan heterodimers formed via a thioether bridge between cytochalasan and curvularin macrolide units. Their structures were elucidated by detailed analysis of NMR, LC-MS/MS, and X-ray crystallography. In bioassays, 1 and 2 exhibited cytotoxic effects on A2780 cells, with IC50 values of 3.9 and 8.3 µM, respectively. They also showed antibacterial activities against E. faecalis and B. subtilis with MIC values of 3.1 and 6.3 µg/mL, respectively.


Asunto(s)
Aspergillus , Citocalasinas , Macrólidos , Aspergillus/química , Citocalasinas/farmacología , Citocalasinas/química , Citocalasinas/aislamiento & purificación , Macrólidos/farmacología , Macrólidos/química , Estructura Molecular , Humanos , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Azufre/química , Cristalografía por Rayos X , Bacillus subtilis/efectos de los fármacos
7.
Mol Genet Genomics ; 298(4): 823-836, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37059908

RESUMEN

Coronavirus 2019 (COVID-19) is a complex disease that affects billions of people worldwide. Currently, effective etiological treatment of COVID-19 is still lacking; COVID-19 also causes damages to various organs that affects therapeutics and mortality of the patients. Surveillance of the treatment responses and organ injury assessment of COVID-19 patients are of high clinical value. In this study, we investigated the characteristic fragmentation patterns and explored the potential in tissue injury assessment of plasma cell-free DNA in COVID-19 patients. Through recruitment of 37 COVID-19 patients, 32 controls and analysis of 208 blood samples upon diagnosis and during treatment, we report gross abnormalities in cfDNA of COVID-19 patients, including elevated GC content, altered molecule size and end motif patterns. More importantly, such cfDNA fragmentation characteristics reflect patient-specific physiological changes during treatment. Further analysis on cfDNA tissue-of-origin tracing reveals frequent tissue injuries in COVID-19 patients, which is supported by clinical diagnoses. Hence, our work demonstrates and extends the translational merit of cfDNA fragmentation pattern as valuable analyte for effective treatment monitoring, as well as tissue injury assessment in COVID-19.


Asunto(s)
COVID-19 , Ácidos Nucleicos Libres de Células , Humanos , COVID-19/diagnóstico , Ácidos Nucleicos Libres de Células/genética
8.
J Virol ; 96(3): e0184221, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34817197

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) is a beta coronavirus that emerged in 2012, causing severe pneumonia and renal failure. MERS-CoV encodes five accessory proteins. Some of them have been shown to interfere with host antiviral immune response. However, the roles of protein 8b in innate immunity and viral virulence was rarely studied. Here, we introduced individual MERS-CoV accessory protein genes into the genome of an attenuated murine coronavirus (Mouse hepatitis virus, MHV), respectively, and found accessory protein 8b could enhance viral replication in vivo and in vitro and increase the lethality of infected mice. RNA-seq analysis revealed that protein 8b could significantly inhibit type I interferon production (IFN-I) and innate immune response in mice infected with MHV expressing protein 8b. We also found that MERS-CoV protein 8b could initiate from multiple internal methionine sites and at least three protein variants were identified. Residues 1-23 of protein 8b was demonstrated to be responsible for increased virulence in vivo. In addition, the inhibitory effect on IFN-I of protein 8b might not contribute to its virulence enhancement as aa1-23 deletion did not affect IFN-I production in vitro and in vivo. Next, we also found that protein 8b was localized to the endoplasmic reticulum (ER)/Golgi membrane in infected cells, which was disrupted by C-terminal region aa 88-112 deletion. This study will provide new insight into the pathogenesis of MERS-CoV infection. IMPORTANCE Multiple coronaviruses (CoV) cause severe respiratory infections and become global public health threats such as SARS-CoV, MERS-CoV, and SARS-CoV-2. Each coronavirus contains different numbers of accessory proteins which show high variability among different CoVs. Accessory proteins are demonstrated to play essential roles in pathogenesis of CoVs. MERS-CoV contains 5 accessory proteins (protein 3, 4a, 4b, 5, 8b), and deletion of all four accessory proteins (protein 3, 4a, 4b, 5), significantly affects MERS-CoV replication and pathogenesis. However, whether ORF8b also regulates MERS-CoV infection is unknown. Here, we constructed mouse hepatitis virus (MHV) recombinant virus expressing MERS-CoV protein 8b and demonstrated protein 8b could significantly enhance the virulence of MHV, which is mediated by N-terminal domain of protein 8b. This study will shed light on the understanding of pathogenesis of MERS-CoV infection.


Asunto(s)
Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Virus de la Hepatitis Murina/fisiología , Dominios y Motivos de Interacción de Proteínas , Proteínas Reguladoras y Accesorias Virales/genética , Animales , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Ratones , Mortalidad , Proteínas Reguladoras y Accesorias Virales/química , Tropismo Viral , Virulencia/genética , Factores de Virulencia/genética
9.
J Virol ; 94(15)2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32434886

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe acute respiratory disease in humans. MERS-CoV strains from early epidemic clade A and contemporary epidemic clade B have not been phenotypically characterized to compare their abilities to infect cells and mice. We isolated the clade B MERS-CoV ChinaGD01 strain from a patient infected during the South Korean MERS outbreak in 2015 and compared the phylogenetics and pathogenicity of MERS-CoV EMC/2012 (clade A) and ChinaGD01 (clade B) in vitro and in vivo Genome alignment analysis showed that most clade-specific mutations occurred in the orf1ab gene, including mutations that were predicted to be potential glycosylation sites. Minor differences in viral growth but no significant differences in plaque size or sensitivity to beta interferon (IFN-ß) were detected between these two viruses in vitro ChinaGD01 virus infection induced more weight loss and inflammatory cytokine production in human DPP4-transduced mice. Viral titers were higher in the lungs of ChinaGD01-infected mice than with EMC/2012 infection. Decreased virus-specific CD4+ and CD8+ T cell numbers were detected in the lungs of ChinaGD01-infected mice. In conclusion, MERS-CoV evolution induced changes to reshape its pathogenicity and virulence in vitro and in vivo and to evade adaptive immune response to hinder viral clearance.IMPORTANCE MERS-CoV is an important emerging pathogen and causes severe respiratory infection in humans. MERS-CoV strains from early epidemic clade A and contemporary epidemic clade B have not been phenotypically characterized to compare their abilities to infect cells and mice. In this study, we showed that a clade B virus ChinaGD01 strain caused more severe disease in mice, with delayed viral clearance, increased inflammatory cytokines, and decreased antiviral T cell responses, than the early clade A virus EMC/2012. Given the differences in pathogenicity of different clades of MERS-CoV, periodic assessment of currently circulating MERS-CoV is needed to monitor potential severity of zoonotic disease.


Asunto(s)
Infecciones por Coronavirus/virología , Genotipo , Interacciones Huésped-Patógeno , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Adulto , Animales , Modelos Animales de Enfermedad , Genoma Viral , Interacciones Huésped-Patógeno/inmunología , Humanos , Interferón Tipo I/farmacología , Masculino , Ratones , Coronavirus del Síndrome Respiratorio de Oriente Medio/clasificación , Coronavirus del Síndrome Respiratorio de Oriente Medio/aislamiento & purificación , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Filogenia , ARN Viral , Linfocitos T/inmunología , Linfocitos T/metabolismo , Virulencia , Replicación Viral/efectos de los fármacos , Replicación Viral/genética , Secuenciación Completa del Genoma
11.
Environ Geochem Health ; 40(4): 1283-1298, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29264818

RESUMEN

There is diverse phosphorus (P) in eutrophicated waters, but it is considered as a crucial nutrient for cyanobacteria growth due to its easy precipitation as insoluble salts. To uncover the effects of complex P nutrients on the emission of volatile organic compounds (VOCs) from cyanobacteria and their toxic effects on other algae, the VOCs from Microcystis flos-aquae supplied with different types and amount of P nutrients were analyzed, and the effects of VOCs and their two main compounds on Chlamydomonas reinhardtii growth were investigated. When M. flos-aquae cells were supplied with K2HPO4, sodium pyrophosphate and sodium hexametaphosphate as the sole P source, 27, 23 and 29 compounds were found, respectively, including furans, sulfocompounds, terpenoids, benzenes, aldehydes, hydrocarbons and esters. With K2HPO4 as the sole P source, the VOC emission increased with reducing P amount, and the maximum emission was found under Non-P condition. In the treatments of M. flos-aquae VOCs under Non-P condition and two main terpenoids (eucalyptol and limonene) in the VOCs, remarkable decreases were found in C. reinhardtii cell growth, photosynthetic pigment content and photosynthetic abilities. Therefore, we deduce that multiple P nutrients in eutrophicated waters induce different VOC emissions from cyanobacteria, and P amount reduction caused by natural precipitation and algal massive growth results in more VOC emissions. These VOCs play toxic roles in cyanobacteria becoming dominant species, and eucalyptol and limonene are two toxic agents.


Asunto(s)
Chlamydomonas reinhardtii/efectos de los fármacos , Microcystis/metabolismo , Fósforo/química , Compuestos Orgánicos Volátiles/toxicidad , Chlamydomonas reinhardtii/crecimiento & desarrollo , Chlamydomonas reinhardtii/metabolismo , Ciclohexanoles/farmacología , Ciclohexenos/farmacología , Eucaliptol , Eutrofización , Limoneno , Monoterpenos/farmacología , Fotosíntesis/efectos de los fármacos , Pigmentos Biológicos/metabolismo , Terpenos/farmacología , Compuestos Orgánicos Volátiles/química
12.
J Virol ; 90(16): 7098-7108, 2016 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-27226371

RESUMEN

UNLABELLED: West Nile virus (WNV) is the most important cause of epidemic encephalitis in North America. Innate immune responses, which are critical for control of WNV infection, are initiated by signaling through pathogen recognition receptors, RIG-I and MDA5, and their downstream adaptor molecule, MAVS. Here, we show that a deficiency of MAVS in hematopoietic cells resulted in increased mortality and delayed WNV clearance from the brain. In Mavs(-/-) mice, a dysregulated immune response was detected, characterized by a massive influx of macrophages and virus-specific T cells into the infected brain. These T cells were polyfunctional and lysed peptide-pulsed target cells in vitro However, virus-specific T cells in the brains of infected Mavs(-/-) mice exhibited lower functional avidity than those in wild-type animals, and even virus-specific memory T cells generated by prior immunization could not protect Mavs(-/-) mice from WNV-induced lethal disease. Concomitant with ineffective virus clearance, macrophage numbers were increased in the Mavs(-/-) brain, and both macrophages and microglia exhibited an activated phenotype. Microarray analyses of leukocytes in the infected Mavs(-/-) brain showed a preferential expression of genes associated with activation and inflammation. Together, these results demonstrate a critical role for MAVS in hematopoietic cells in augmenting the kinetics of WNV clearance and thereby preventing a dysregulated and pathogenic immune response. IMPORTANCE: West Nile virus (WNV) is the most important cause of mosquito-transmitted encephalitis in the United States. The innate immune response is known to be critical for protection in infected mice. Here, we show that expression of MAVS, a key adaptor molecule in the RIG-I-like receptor RNA-sensing pathway, in hematopoietic cells is critical for protection from lethal WNV infection. In the absence of MAVS, there is a massive infiltration of myeloid cells and virus-specific T cells into the brain and overexuberant production of proinflammatory cytokines. These results demonstrate the important role that MAVS expression in hematopoietic cells has in regulating the inflammatory response in the WNV-infected brain.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Encéfalo/inmunología , Encéfalo/patología , Células Madre Hematopoyéticas/inmunología , Inmunidad Innata/inmunología , Fiebre del Nilo Occidental/patología , Virus del Nilo Occidental/patogenicidad , Animales , Encéfalo/virología , Proliferación Celular , Citocinas/metabolismo , Femenino , Citometría de Flujo , Células Madre Hematopoyéticas/metabolismo , Macrófagos/inmunología , Macrófagos/patología , Macrófagos/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Linfocitos T/inmunología , Linfocitos T/patología , Linfocitos T/virología , Fiebre del Nilo Occidental/inmunología , Fiebre del Nilo Occidental/virología
13.
Proc Natl Acad Sci U S A ; 111(13): 4970-5, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24599590

RESUMEN

In this era of continued emergence of zoonotic virus infections, the rapid development of rodent models represents a critical barrier to public health preparedness, including the testing of antivirus therapy and vaccines. The Middle East respiratory syndrome coronavirus (MERS-CoV) was recently identified as the causative agent of a severe pneumonia. Given the ability of coronavirus to rapidly adapt to new hosts, a major public health concern is that MERS-CoV will further adapt to replication in humans, triggering a pandemic. No small-animal model for this infection is currently available, but studies suggest that virus entry factors can confer virus susceptibility. Here, we show that mice were sensitized to MERS-CoV infection by prior transduction with adenoviral vectors expressing the human host-cell receptor dipeptidyl peptidase 4. Mice developed a pneumonia characterized by extensive inflammatory-cell infiltration with virus clearance occurring 6-8 d after infection. Clinical disease and histopathological changes were more severe in the absence of type-I IFN signaling whereas the T-cell response was required for virus clearance. Using these mice, we demonstrated the efficacy of a therapeutic intervention (poly I:C) and a potential vaccine [Venezuelan equine encephalitis replicon particles expressing MERS-CoV spike protein]. We also found little protective cross-reactivity between MERS-CoV and the severe acute respiratory syndrome-CoV. Our results demonstrate that this system will be useful for MERS-CoV studies and for the rapid development of relevant animal models for emerging respiratory viral infections.


Asunto(s)
Infecciones por Coronavirus/virología , Modelos Animales de Enfermedad , Infecciones del Sistema Respiratorio/virología , Animales , Anticuerpos Antivirales/inmunología , Linfocitos T CD8-positivos/virología , Coronavirus/inmunología , Coronavirus/fisiología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Reacciones Cruzadas/inmunología , Humanos , Interferón Tipo I/metabolismo , Ratones , Ratones Endogámicos C57BL , Medio Oriente , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/prevención & control , Síndrome Respiratorio Agudo Grave/inmunología , Transducción de Señal/inmunología
14.
Ecotoxicol Environ Saf ; 135: 191-200, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27741460

RESUMEN

Eutrophication promotes massive growth of cyanobacteria and algal blooms, which can poison other algae and reduce biodiversity. To investigate the differences in multiple nitrogen (N) sources in eutrophicated water on the emission of volatile organic compounds (VOCs) from cyanobacteria, and their toxic effects on other algal growth, we analyzed VOCs emitted from Microcystis flos-aquae with different types and concentrations of nitrogen, and determined the effects under Normal-N and Non-N conditions on Chlorella vulgaris. M. flos-aquae released 27, 22, 20, 27, 19, 25 and 17 compounds, respectively, with NaNO3, NaNO2, NH4Cl, urea, Ser, Lys and Arg as the sole N source. With the reduction in N amount, the emission of VOCs was increased markedly, and the most VOCs were found under Non-N condition. C. vulgaris cell propagation, photosynthetic pigment and Fv/Fm declined significantly following exposure to M. flos-aquae VOCs under Non-N condition, but not under Normal-N condition. When C. vulgaris cells were treated with two terpenoids, eucalyptol and limonene, the inhibitory effects were enhanced with increasing concentrations. Therefore, multiple N sources in eutrophicated water induce different VOC emissions from cyanobacteria, and reduction in N can cause nutrient competition, which can result in emissions of more VOCs. Those VOCs released from M. flos-aquae cells under Non-N for nutrient competition can inhibit other algal growth. Among those VOCs, eucalyptol and limonene are the major toxic agents.


Asunto(s)
Chlorella vulgaris/efectos de los fármacos , Chlorella vulgaris/fisiología , Eutrofización , Microcystis/metabolismo , Nitrógeno/metabolismo , Compuestos Orgánicos Volátiles/toxicidad , Cloruro de Amonio/metabolismo , Arginina/metabolismo , Chlorella vulgaris/crecimiento & desarrollo , Ciclohexanoles/farmacología , Ciclohexenos/farmacología , Eucaliptol , Limoneno , Lisina/metabolismo , Monoterpenos/farmacología , Nitratos/metabolismo , Fotosíntesis/efectos de los fármacos , Serina/metabolismo , Nitrito de Sodio/metabolismo , Terpenos/farmacología , Urea/metabolismo , Compuestos Orgánicos Volátiles/análisis
15.
PLoS Pathog ; 10(8): e1004279, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25102154

RESUMEN

Several studies have demonstrated the presence of pathogen-specific Foxp3+ CD4 regulatory T cells (Treg) in infected animals, but little is known about where and how these cells affect the effector T cell responses and whether they are more suppressive than bulk Treg populations. We recently showed the presence of both epitope M133-specific Tregs (M133 Treg) and conventional CD4 T cells (M133 Tconv) in the brains of mice with coronavirus-induced encephalitis. Here, we provide new insights into the interactions between pathogenic Tconv and Tregs responding to the same epitope. M133 Tregs inhibited the proliferation but not initial activation of M133 Tconv in draining lymph nodes (DLN). Further, M133 Tregs inhibited migration of M133 Tconv from the DLN. In addition, M133 Tregs diminished microglia activation and decreased the number and function of Tconv in the infected brain. Thus, virus-specific Tregs inhibited pathogenic CD4 T cell responses during priming and effector stages, particularly those recognizing cognate antigen, and decreased mortality and morbidity without affecting virus clearance. These cells are more suppressive than bulk Tregs and provide a targeted approach to ameliorating immunopathological disease in infectious settings.


Asunto(s)
Infecciones por Coronaviridae/inmunología , Encefalitis Viral/inmunología , Linfocitos T Reguladores/inmunología , Traslado Adoptivo , Animales , Linfocitos T CD4-Positivos/inmunología , Modelos Animales de Enfermedad , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
16.
Artículo en Inglés | MEDLINE | ID: mdl-24496671

RESUMEN

Oval cells have a potential to differentiate into a variety of cell lineages including hepatocytes and biliary epithelia. Several models have been established to activate the oval cells by incorporating a variety of toxins and carcinogens, alone or combined with surgical treatment. Those models are obviously not suitable for the study on human hepatic oval cells. It is necessary to establish a new and efficient model to study the human hepatic oval cells. In this study, the hepatocyte growth factor (HGF) and epidermal growth factor (EGF) were used to induce differentiation of mouse embryonic stem (ES) cells into hepatic oval cells. We first confirmed that hepatic oval cells derived from ES cells, which are bipotential, do exist during the course of mouse ES cells' differentiation into hepatic parenchymal cells. RT-PCR and transmission electron microscopy were applied in this study. The ratio of Sca-1+/CD34+ cells sorted by FACS in the induction group was increased from day 4 and reached the maximum on the day 8, whereas that in the control group remained at a low level. The differentiation ratio of Sca-1+/CD34+ cells in the induction group was significantly higher than that in the control group. About 92.48% of the sorted Sca-1+/CD34+ cells on the day 8 were A6 positive. Highly purified A6+/Sca-1+/CD34+ hepatic oval cells derived from ES cells could be obtained by FACS. The differentiation ratio of hepatic oval cells in the induction group (up to 4.46%) was significantly higher than that in the control group. The number of hepatic oval cells could be increased significantly by HGF and EGF. The study also examined the ultrastructures of ES-derived hepatic oval cells' membrane surface by atomic force microscopy. The ES-derived hepatic oval cells cultured and sorted by our protocols may be available for the future clinical application.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Embrionarias/citología , Hígado/citología , Células Madre/citología , Animales , Antígenos CD34/genética , Antígenos CD34/metabolismo , Antígenos Ly/genética , Antígenos Ly/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/ultraestructura , Factor de Crecimiento Epidérmico/farmacología , Citometría de Flujo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Factor de Crecimiento de Hepatocito/farmacología , Hígado/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Proteínas de Microfilamentos/metabolismo , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre/metabolismo , Células Madre/ultraestructura , Factores de Tiempo
17.
Vaccines (Basel) ; 12(5)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38793729

RESUMEN

Despite significant strides in vaccine research and the availability of vaccines for many infectious diseases, the threat posed by both known and emerging infectious diseases persists. Moreover, breakthrough infections following vaccination remain a concern. Therefore, the development of novel vaccines is imperative. These vaccines must exhibit robust protective efficacy, broad-spectrum coverage, and long-lasting immunity. One promising avenue in vaccine development lies in leveraging T-cells, which play a crucial role in adaptive immunity and regulate immune responses during viral infections. T-cell recognition can target highly variable or conserved viral proteins, and memory T-cells offer the potential for durable immunity. Consequently, T-cell-based vaccines hold promise for advancing vaccine development efforts. This review delves into the latest research advancements in T-cell-based vaccines across various platforms and discusses the associated challenges.

18.
Int J Biol Macromol ; 264(Pt 1): 130377, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38395279

RESUMEN

The COVID-19 pandemic caused by SARS-CoV-2 continues to pose a threat to public health, and extensive research by scientists worldwide has also prompted the development of antiviral therapies. The 3C-like protease (3CLpro) is critical for SARS-CoV-2 replication and acts as an effective target for drug development. To date, numerous of natural products have been reported to exhibit inhibitory effects on 3CLpro, which encourages us to identify other novel inhibitors and elucidate their mechanism of action. In this study, we first screened an in-house compound library of 101 natural products using FRET assay, and found that oleuropein showed good inhibitory activity against SARS CoV-2 3CLpro with an IC50 value of 4.18 µM. Further studies revealed that the catechol core is essential for activity and can covalently bind to SARS-CoV-2 3CLpro. Among other 45 catechol derivatives, wedelolactone, capsazepine and brazilin showed better SARS-CoV-2 3CLpro inhibitory activities with IC50 values of 1.35 µM, 1.95 µM and 1.18 µM, respectively. These catechol derivatives were verified to be irreversible covalent inhibitors by time-dependent experiments, enzymatic kinetic studies, dilution and dialysis assays. It also exhibited good selectivity towards different cysteine proteases (SARS-CoV-2 PLpro, cathepsin B and cathepsin L). Subsequently, the binding affinity between brazilin and SARS-CoV-2 3CLpro was determined by SPR assay with KD value of 0.80 µM. Molecular dynamic (MD) simulations study showed the binding mode of brazilin in the target protein. In particular, brazilin displayed good anti-SARS-CoV-2 activity in A549-hACE2-TMPRSS2 cells with EC50 values of 7.85 ± 0.20 µM and 5.24 ± 0.21 µM for full time and post-infection treatments, respectively. This study provides a promising lead compound for the development of novel anti-SARS-CoV-2 drugs.


Asunto(s)
Productos Biológicos , COVID-19 , Humanos , SARS-CoV-2 , Pandemias , Cinética , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Diálisis Renal , Catecoles/farmacología , Antivirales/química , Simulación del Acoplamiento Molecular
19.
J Psychiatr Res ; 175: 235-242, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38749297

RESUMEN

Rapid Automatized Naming (RAN) is the core defect of developmental dyslexia (DD), requiring collaboration among brain areas to complete. However, it's still unclear which effective connectivity (EC) among brain areas are crucial for RAN deficits in Chinses children with DD. The current study aims to explore the EC among brain areas related to RAN deficits in Chinese children with DD. We recruited 36 Chinese children with DD and 64 typically developing (TD) children aged 8-12 to complete resting-state functional magnetic resonance imaging (rs-fMRI) scan. Granger causality analysis (GCA) was employed to analysis the EC among brain areas related to RAN, and to calculate the relationship between EC and RAN scores. Compared to TD group, the DD group exhibited significantly decreased EC from left precentral gyrus (PG) to right precuneus, left anterior cingulate and paracingulate gyrus (ACG), left calcarine and right angular, from left middle frontal gyrus (MFG) to left calcarine. Additionally, the DD group showed increased EC from right cuneus to left inferior frontal gyrus triangular part (IFGtri). The EC from left PG to left ACG was positively correlated with letters-RAN score. The results showed Chinese children with DD had both defect and compensatory mechanisms for their RAN deficits. The decreased EC output from left PG may be the core problem of the RAN deficits, which may influence the integration of visual-spatial information, attention, memory retrieval, and speech motor in speech production. The current study has important clinic implications for establishing intervention measures targeted brain.


Asunto(s)
Dislexia , Imagen por Resonancia Magnética , Humanos , Dislexia/diagnóstico por imagen , Dislexia/fisiopatología , Niño , Masculino , Femenino , China , Conectoma , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Mapeo Encefálico , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiopatología , Pueblos del Este de Asia
20.
Cell Mol Immunol ; 21(2): 119-133, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38238440

RESUMEN

The COVID-19 pandemic, which was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a worldwide health crisis due to its transmissibility. SARS-CoV-2 infection results in severe respiratory illness and can lead to significant complications in affected individuals. These complications encompass symptoms such as coughing, respiratory distress, fever, infectious shock, acute respiratory distress syndrome (ARDS), and even multiple-organ failure. Animal models serve as crucial tools for investigating pathogenic mechanisms, immune responses, immune escape mechanisms, antiviral drug development, and vaccines against SARS-CoV-2. Currently, various animal models for SARS-CoV-2 infection, such as nonhuman primates (NHPs), ferrets, hamsters, and many different mouse models, have been developed. Each model possesses distinctive features and applications. In this review, we elucidate the immune response elicited by SARS-CoV-2 infection in patients and provide an overview of the characteristics of various animal models mainly used for SARS-CoV-2 infection, as well as the corresponding immune responses and applications of these models. A comparative analysis of transcriptomic alterations in the lungs from different animal models revealed that the K18-hACE2 and mouse-adapted virus mouse models exhibited the highest similarity with the deceased COVID-19 patients. Finally, we highlighted the current gaps in related research between animal model studies and clinical investigations, underscoring lingering scientific questions that demand further clarification.


Asunto(s)
COVID-19 , SARS-CoV-2 , Ratones , Cricetinae , Humanos , Animales , Pandemias , Vacunas contra la COVID-19 , Hurones , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA