Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(40): 24664-24669, 2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-32968024

RESUMEN

We used a combination of polarized Raman spectroscopy experiment and model magnetism-phonon coupling calculations to study the rich magneto-Raman effect in the two-dimensional (2D) magnet CrI3 We reveal a layered-magnetism-assisted phonon scattering mechanism below the magnetic onset temperature, whose Raman excitation breaks time-reversal symmetry, has an antisymmetric Raman tensor, and follows the magnetic phase transitions across critical magnetic fields, on top of the presence of the conventional phonon scattering with symmetric Raman tensors in N-layer CrI3 We resolve in data and by calculations that the first-order A g phonon of the monolayer splits into an N-fold multiplet in N-layer CrI3 due to the interlayer coupling [Formula: see text] and that the phonons within the multiplet show distinct magnetic field dependence because of their different layered-magnetism-phonon coupling. We further find that such a layered-magnetism-phonon coupled Raman scattering mechanism extends beyond first-order to higher-order multiphonon scattering processes. Our results on the magneto-Raman effect of the first-order phonons in the multiplet and the higher-order multiphonons in N-layer CrI3 demonstrate the rich and strong behavior of emergent magneto-optical effects in 2D magnets and underline the unique opportunities of spin-phonon physics in van der Waals layered magnets.

2.
Proc Natl Acad Sci U S A ; 116(23): 11131-11136, 2019 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-31110023

RESUMEN

We conduct a comprehensive study of three different magnetic semiconductors, CrI3, CrBr3, and CrCl3, by incorporating both few-layer and bilayer samples in van der Waals tunnel junctions. We find that the interlayer magnetic ordering, exchange gap, magnetic anisotropy, and magnon excitations evolve systematically with changing halogen atom. By fitting to a spin wave theory that accounts for nearest-neighbor exchange interactions, we are able to further determine a simple spin Hamiltonian describing all three systems. These results extend the 2D magnetism platform to Ising, Heisenberg, and XY spin classes in a single material family. Using magneto-optical measurements, we additionally demonstrate that ferromagnetism can be stabilized down to monolayer in more isotropic CrBr3, with transition temperature still close to that of the bulk.

3.
Phys Rev Lett ; 127(12): 126401, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34597104

RESUMEN

We show the ferro-rotational nature of the commensurate charge density wave (CCDW) in 1T-TaS_{2} and track its dynamic modulations by temperature-dependent and time-resolved electric quadrupole rotation anisotropy-second harmonic generation (EQ RA-SHG), respectively. The ultrafast modulations manifest as the breathing and the rotation of the EQ RA-SHG patterns at three frequencies around the reported single CCDW amplitude mode frequency. A sudden shift of the triplet frequencies and a dramatic increase in the breathing and rotation magnitude further reveal a photoinduced transient CDW phase across a critical pump fluence of ∼0.5 mJ/cm^{2}.

4.
Phys Rev Lett ; 125(8): 087202, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32909791

RESUMEN

We used a combination of polarized Raman spectroscopy and spin wave calculations to study magnetic excitations in the strong spin-orbit-coupled bilayer perovskite antiferromagnet Sr_{3}Ir_{2}O_{7}. We observed two broad Raman features at ∼800 and ∼1400 cm^{-1} arising from magnetic excitations. Unconventionally, the ∼800 cm^{-1} feature is fully symmetric (A_{1g}) with respect to the underlying tetragonal (D_{4h}) crystal lattice which, together with its broad line shape, definitively rules out the possibility of a single magnon excitation as its origin. In contrast, the ∼1400 cm^{-1} feature shows up in both the A_{1g} and B_{2g} channels. From spin wave and two-magnon scattering cross-section calculations of a tetragonal bilayer antiferromagnet, we identified the ∼800 cm^{-1} (1400 cm^{-1}) feature as two-magnon excitations with pairs of magnons from the zone-center Γ point (zone-boundary van Hove singularity X point). We further found that this zone-center two-magnon scattering is unique to bilayer perovskite magnets which host an optical branch in addition to the acoustic branch, as compared to their single layer counterparts. This zone-center two-magnon mode is distinct in symmetry from the time-reversal symmetry broken "spin wave gap" and "phase mode" proposed to explain the ∼92 meV (742 cm^{-1}) gap in resonant inelastic x-ray spectroscopy magnetic excitation spectra of Sr_{3}Ir_{2}O_{7}.

5.
Nat Mater ; 22(5): 536-537, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37138008
6.
Nano Lett ; 15(2): 1428-36, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25625227

RESUMEN

Heterogeneity in dopant concentration has long been important to the electronic properties in chemically doped materials. In this work, we experimentally demonstrate that during the chemical vapor deposition process, in contrast to three-dimensional polycrystals, the substitutional nitrogen atoms avoid crystal grain boundaries and edges over micron length scales while distributing uniformly in the interior of each grain. This phenomenon is universally observed independent of the details of the growth procedure such as temperature, pressure, substrate, and growth precursor.

7.
J Am Chem Soc ; 136(4): 1391-7, 2014 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-24392951

RESUMEN

Atomic-level details of dopant distributions can significantly influence the material properties. Using scanning tunneling microscopy, we investigate the distribution of substitutional dopants in nitrogen-doped graphene with regard to sublattice occupancy within the honeycomb structure. Samples prepared by chemical vapor deposition (CVD) using pyridine on copper exhibit well-segregated domains of nitrogen dopants in the same sublattice, extending beyond 100 nm. On the other hand, samples prepared by postsynthesis doping of pristine graphene exhibit a random distribution between sublattices. On the basis of theoretical calculations, we attribute the formation of sublattice domains to the preferential attachment of nitrogen to the edge sites of graphene during the CVD growth process. The breaking of sublattice symmetry in doped graphene can have important implications in its electronic applications, such as the opening of a tunable band gap in the material.

8.
Nano Lett ; 13(4): 1386-92, 2013 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-23461627

RESUMEN

Graphene exfoliated onto muscovite mica is studied using ultrahigh vacuum scanning tunneling microscopy (UHV-STM) techniques. Mica provides an interesting dielectric substrate interface to measure the properties of graphene due to the ultraflat nature of a cleaved mica surface and the surface electric dipoles it possesses. Flat regions of the mica surface show some surface modulation of the graphene topography (24 pm) due to topographic modulation of the mica surface and full conformation of the graphene to that surface. In addition to these ultraflat regions, plateaus of varying size having been found. A comparison of topographic images and STS measurements show that these plateaus are of two types: one with characteristics of water monolayer formation between the graphene and mica, and the other arising from potassium ions trapped at the interfacial region. Immediately above the water induced plateaus, graphene is insulated from charge doping, while p-type doping is observed in areas adjacent to these water nucleation points. However, above and in the neighborhood of interfacial potassium ions, only n-type doping is observed. Graphene regions above the potassium ions are more strongly n-doped than regions adjacent to these alkali atom plateaus. Furthermore, a direct correlation of these Fermi level shifts with topographic features is seen without the random charge carrier density modulation observed in other dielectric substrates. This suggests a possible route to nanoscopic control of the local electron and hole doping in graphene via specific substrate architecture.


Asunto(s)
Silicatos de Aluminio/química , Grafito/química , Ensayo de Materiales , Electrones , Microscopía de Túnel de Rastreo , Conformación Molecular , Nanotecnología , Tamaño de la Partícula , Propiedades de Superficie , Agua/química
9.
Nano Lett ; 13(10): 4659-65, 2013 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-24032458

RESUMEN

We use scanning tunneling microscopy and X-ray spectroscopy to characterize the atomic and electronic structure of boron-doped and nitrogen-doped graphene created by chemical vapor deposition on copper substrates. Microscopic measurements show that boron, like nitrogen, incorporates into the carbon lattice primarily in the graphitic form and contributes ~0.5 carriers into the graphene sheet per dopant. Density functional theory calculations indicate that boron dopants interact strongly with the underlying copper substrate while nitrogen dopants do not. The local bonding differences between graphitic boron and nitrogen dopants lead to large scale differences in dopant distribution. The distribution of dopants is observed to be completely random in the case of boron, while nitrogen displays strong sublattice clustering. Structurally, nitrogen-doped graphene is relatively defect-free while boron-doped graphene films show a large number of Stone-Wales defects. These defects create local electronic resonances and cause electronic scattering, but do not electronically dope the graphene film.


Asunto(s)
Boro/química , Carbono/química , Grafito/química , Nitrógeno/química , Cobre/química , Electrónica , Espectrometría Raman
10.
Adv Sci (Weinh) ; : e2402048, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961641

RESUMEN

Ferro-rotational (FR) materials, renowned for their distinctive material functionalities, present challenges in the growth of homo-FR crystals (i.e., single FR domain). This study explores a cost-effective approach to growing homo-FR helimagnetic RbFe(SO4)2 (RFSO) crystals by lowering the crystal growth temperature below the TFR threshold using the high-pressure hydrothermal method. Through polarized neutron diffraction experiments, it is observed that nearly 86% of RFSO crystals consist of a homo-FR domain. Notably, RFSO displays remarkable stability in the FR phase, with an exceptionally high TFR of ≈573 K. Furthermore, RFSO exhibits a chiral helical magnetic structure with switchable ferroelectric polarization below 4 K. Importantly, external electric fields can induce a single magnetic domain state and manipulate its magnetic chirality. The findings suggest that the search for new FR magnets with outstanding material properties should consider magnetic sulfates as promising candidates.

11.
Nat Commun ; 15(1): 5712, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977692

RESUMEN

Recent demonstrations of moiré magnetism, featuring exotic phases with noncollinear spin order in the twisted van der Waals (vdW) magnet chromium triiodide CrI3, have highlighted the potential of twist engineering of magnetic (vdW) materials. However, the local magnetic interactions, spin dynamics, and magnetic phase transitions within and across individual moiré supercells remain elusive. Taking advantage of a scanning single-spin magnetometry platform, here we report observation of two distinct magnetic phase transitions with separate critical temperatures within a moiré supercell of small-angle twisted double trilayer CrI3. By measuring temperature-dependent spin fluctuations at the coexisting ferromagnetic and antiferromagnetic regions in twisted CrI3, we explicitly show that the Curie temperature of the ferromagnetic state is higher than the Néel temperature of the antiferromagnetic one by ~10 K. Our mean-field calculations attribute such a spatial and thermodynamic phase separation to the stacking order modulated interlayer exchange coupling at the twisted interface of moiré superlattices.

12.
Nano Lett ; 12(5): 2408-13, 2012 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-22494089

RESUMEN

Graphene single layers grown by chemical vapor deposition on single crystal Cu substrates are subject to nonuniform physisorption strains that depend on the orientation of the Cu surface. The strains are revealed in Raman spectra and quantitatively interpreted by molecular dynamics (MD) simulations. An average compressive strain on the order of 0.5% is determined in graphene on Cu(111). In graphene on Cu (100), MD simulations interpret the observed highly nonuniform strains.

13.
Nano Lett ; 12(8): 4025-31, 2012 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-22746249

RESUMEN

Robust methods to tune the unique electronic properties of graphene by chemical modification are in great demand due to the potential of the two dimensional material to impact a range of device applications. Here we show that carbon and nitrogen core-level resonant X-ray spectroscopy is a sensitive probe of chemical bonding and electronic structure of chemical dopants introduced in single-sheet graphene films. In conjunction with density functional theory based calculations, we are able to obtain a detailed picture of bond types and electronic structure in graphene doped with nitrogen at the sub-percent level. We show that different N-bond types, including graphitic, pyridinic, and nitrilic, can exist in a single, dilutely N-doped graphene sheet. We show that these various bond types have profoundly different effects on the carrier concentration, indicating that control over the dopant bond type is a crucial requirement in advancing graphene electronics.

14.
Brain Behav ; 13(7): e3057, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37190900

RESUMEN

INTRODUCTION: Previous studies have revealed abnormal resting-state brain activity in patients with end-stage renal disease (ESRD); however, the results are inconsistent. Thus, we conducted a coordinate-based meta-analysis of whole-brain resting-state functional neuroimaging studies in ESRD to identify the most consistent neural activity alterations in ESRD patients and explore their relation to serological indicators. METHODS: A comprehensive literature search strategy was applied to select pertinent studies up to December 2022 in PubMed, Web of Science, and Embase databases. Voxel-wise meta-analysis was conducted via the latest meta-analytic algorithm, seed-based d mapping with permutation of subject images software. Meta-regression analyses were also conducted to explore the potential effect of clinical variables on resting-state neural activity. RESULTS: Eleven studies comprising 304 patients with ESRD and 296 healthy controls (HCs) were included. Compared with HCs, ESRD patients showed decreased brain activity in the default mode network (DMN) regions, including the bilateral anterior cingulate cortex/medial prefrontal cortex, bilateral midcingulate cortex/posterior cingulate cortex, bilateral precuneus, and right angular gyrus. The neural activities in the bilateral midcingulate cortex, bilateral midcingulate cortex/posterior cingulate cortex, and right angular gyrus were significantly associated with serological indexes including hemoglobin, urea, and creatinine levels. CONCLUSION: The present study provides a quantitative overview of brain activity alterations in patients with ESRD, and the results confirm the essential role of the DMN in ESRD patients, which may be the potential neural basis of their cognitive deficits. Additionally, some serological indicators may be used as predictive markers for progressive impairment of brain function.


Asunto(s)
Trastornos del Conocimiento , Disfunción Cognitiva , Fallo Renal Crónico , Humanos , Encéfalo/diagnóstico por imagen , Fallo Renal Crónico/diagnóstico por imagen , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos
15.
Sci Rep ; 13(1): 6143, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37061576

RESUMEN

After graphene was first exfoliated in 2004, research worldwide has focused on discovering and exploiting its distinctive electronic, mechanical, and structural properties. Application of the efficacious methodology used to fabricate graphene, mechanical exfoliation followed by optical microscopy inspection, to other analogous bulk materials has resulted in many more two-dimensional (2D) atomic crystals. Despite their fascinating physical properties, manual identification of 2D atomic crystals has the clear drawback of low-throughput and hence is impractical for any scale-up applications of 2D samples. To combat this, recent integration of high-performance machine-learning techniques, usually deep learning algorithms because of their impressive object recognition abilities, with optical microscopy have been used to accelerate and automate this traditional flake identification process. However, deep learning methods require immense datasets and rely on uninterpretable and complicated algorithms for predictions. Conversely, tree-based machine-learning algorithms represent highly transparent and accessible models. We investigate these tree-based algorithms, with features that mimic color contrast, for automating the manual inspection process of exfoliated 2D materials (e.g., MoSe2). We examine their performance in comparison to ResNet, a famous Convolutional Neural Network (CNN), in terms of accuracy and the physical nature of their decision-making process. We find that the decision trees, gradient boosted decision trees, and random forests utilize physical aspects of the images to successfully identify 2D atomic crystals without suffering from extreme overfitting and high training dataset demands. We also employ a post-hoc study that identifies the sub-regions CNNs rely on for classification and find that they regularly utilize physically insignificant image attributes when correctly identifying thin materials.

16.
Nat Commun ; 14(1): 5259, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644000

RESUMEN

Moiré magnetism featured by stacking engineered atomic registry and lattice interactions has recently emerged as an appealing quantum state of matter at the forefront of condensed matter physics research. Nanoscale imaging of moiré magnets is highly desirable and serves as a prerequisite to investigate a broad range of intriguing physics underlying the interplay between topology, electronic correlations, and unconventional nanomagnetism. Here we report spin defect-based wide-field imaging of magnetic domains and spin fluctuations in twisted double trilayer (tDT) chromium triiodide CrI3. We explicitly show that intrinsic moiré domains of opposite magnetizations appear over arrays of moiré supercells in low-twist-angle tDT CrI3. In contrast, spin fluctuations measured in tDT CrI3 manifest little spatial variations on the same mesoscopic length scale due to the dominant driving force of intralayer exchange interaction. Our results enrich the current understanding of exotic magnetic phases sustained by moiré magnetism and highlight the opportunities provided by quantum spin sensors in probing microscopic spin related phenomena on two-dimensional flatland.

17.
ACS Nano ; 16(10): 15917-15926, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36149801

RESUMEN

van der Waals (vdW) magnets are receiving ever-growing attention nowadays due to their significance in both fundamental research on low-dimensional magnetism and potential applications in spintronic devices. The high crystalline quality of vdW magnets is the key to maintaining intrinsic magnetic and electronic properties, especially when exfoliated down to the two-dimensional limit. Here, ultrahigh-quality air-stable vdW CrSBr crystals are synthesized using the direct solid-vapor synthesis method. The high single crystallinity and spatial homogeneity have been thoroughly evidenced at length scales from submm to atomic resolution by X-ray diffraction, second harmonic generation, and scanning transmission electron microscopy. More importantly, specific heat measurements of ultrahigh-quality CrSBr crystals show three thermodynamic anomalies at 185, 156, and 132 K, revealing a stage-by-stage development of the magnetic order upon cooling, which is also corroborated with the magnetization and transport results. Our ultrahigh-quality CrSBr can further be exfoliated down to monolayers and bilayers easily, providing the building blocks of heterostructures for spintronic and magneto-optoelectronic applications.

18.
Nat Commun ; 13(1): 7826, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36535920

RESUMEN

Twisted 2D materials form complex moiré structures that spontaneously reduce symmetry through picoscale deformation within a mesoscale lattice. We show twisted 2D materials contain a torsional displacement field comprised of three transverse periodic lattice distortions (PLD). The torsional PLD amplitude provides a single order parameter that concisely describes the structural complexity of twisted bilayer moirés. Moreover, the structure and amplitude of a torsional periodic lattice distortion is quantifiable using rudimentary electron diffraction methods sensitive to reciprocal space. In twisted bilayer graphene, the torsional PLD begins to form at angles below 3.89° and the amplitude reaches 8 pm around the magic angle of 1. 1°. At extremely low twist angles (e.g. below 0.25°) the amplitude increases and additional PLD harmonics arise to expand Bernal stacked domains separated by well defined solitonic boundaries. The torsional distortion field in twisted bilayer graphene is analytically described and has an upper bound of 22.6 pm. Similar torsional distortions are observed in twisted WS2, CrI3, and WSe2/MoSe2.

19.
Nat Commun ; 13(1): 413, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35058434

RESUMEN

Compelling evidence suggests distinct correlated electron behavior may exist only in clean 2D materials such as 1T-TaS2. Unfortunately, experiment and theory suggest that extrinsic disorder in free standing 2D layers disrupts correlation-driven quantum behavior. Here we demonstrate a route to realizing fragile 2D quantum states through endotaxial polytype engineering of van der Waals materials. The true isolation of 2D charge density waves (CDWs) between metallic layers stabilizes commensurate long-range order and lifts the coupling between neighboring CDW layers to restore mirror symmetries via interlayer CDW twinning. The twinned-commensurate charge density wave (tC-CDW) reported herein has a single metal-insulator phase transition at ~350 K as measured structurally and electronically. Fast in-situ transmission electron microscopy and scanned nanobeam diffraction map the formation of tC-CDWs. This work introduces endotaxial polytype engineering of van der Waals materials to access latent 2D ground states distinct from conventional 2D fabrication.

20.
ACS Nano ; 16(5): 6960-7079, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35442017

RESUMEN

Magnetism in two-dimensional (2D) van der Waals (vdW) materials has recently emerged as one of the most promising areas in condensed matter research, with many exciting emerging properties and significant potential for applications ranging from topological magnonics to low-power spintronics, quantum computing, and optical communications. In the brief time after their discovery, 2D magnets have blossomed into a rich area for investigation, where fundamental concepts in magnetism are challenged by the behavior of spins that can develop at the single layer limit. However, much effort is still needed in multiple fronts before 2D magnets can be routinely used for practical implementations. In this comprehensive review, prominent authors with expertise in complementary fields of 2D magnetism (i.e., synthesis, device engineering, magneto-optics, imaging, transport, mechanics, spin excitations, and theory and simulations) have joined together to provide a genome of current knowledge and a guideline for future developments in 2D magnetic materials research.


Asunto(s)
Metodologías Computacionales , Teoría Cuántica , Fenómenos Magnéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA