Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nature ; 623(7989): 964-971, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38030779

RESUMEN

Plasmas can generate ultra-high-temperature reactive environments that can be used for the synthesis and processing of a wide range of materials1,2. However, the limited volume, instability and non-uniformity of plasmas have made it challenging to scalably manufacture bulk, high-temperature materials3-8. Here we present a plasma set-up consisting of a pair of carbon-fibre-tip-enhanced electrodes that enable the generation of a uniform, ultra-high temperature and stable plasma (up to 8,000 K) at atmospheric pressure using a combination of vertically oriented long and short carbon fibres. The long carbon fibres initiate the plasma by micro-spark discharge at a low breakdown voltage, whereas the short carbon fibres coalesce the discharge into a volumetric and stable ultra-high-temperature plasma. As a proof of concept, we used this process to synthesize various extreme materials in seconds, including ultra-high-temperature ceramics (for example, hafnium carbonitride) and refractory metal alloys. Moreover, the carbon-fibre electrodes are highly flexible and can be shaped for various syntheses. This simple and practical plasma technology may help overcome the challenges in high-temperature synthesis and enable large-scale electrified plasma manufacturing powered by renewable electricity.

2.
Genetica ; 151(2): 87-96, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36652142

RESUMEN

Plant hormone abscisic acid (ABA) plays an important role in plant growth, development and response to biotic / abiotic stressors. Thus, it is necessary to investigate the crucial genes associated with ABA synthesis. Currently, the carotenoid cleavage oxygenases (CCOs) family that function as the key step for ABA synthesis are not well understood in banana. In this study, 13 MaCCO genes and 12 MbCCO genes, divided into NCED subgroup and CCD subgroup, were identified from the banana genome, and their evolutionary relationship, protein motifs, and gene structures were also determined. Transcriptomic analysis suggested the involvement of CCO genes in banana development, ripening, and response to abiotic and biotic stressors, and homologous gene pairs showed homoeologue expression bias in the A or B subgenome. Our results identified MaNCED3A, MaCCD1, and MbNCED3B as the genes with the highest expression during fruit development and ripening. MaNCED5 / MbNCED5 and MaNCED9A might respond to abiotic stress, and MaNCED3A, 3B, 6 A, 9 A, and MbNCED9A showed transcriptional changes that could be a response to Foc4 infection. These findings may contribute to the characterization of key enzymes involved in ABA biosynthesis, as well as to identify potential targets for the genetic improvement of banana.


Asunto(s)
Musa , Musa/genética , Musa/metabolismo , Ácido Abscísico/metabolismo , Perfilación de la Expresión Génica/métodos , Desarrollo de la Planta , Regulación de la Expresión Génica de las Plantas , Frutas/genética , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Appl Opt ; 60(17): 5203-5207, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34143089

RESUMEN

We demonstrate a bichromatic Doppler-free spectroscopy of an 87RbD1 line by using a dual-frequency, counterpropagating laser field with orthogonal linear polarizations. A reversed Doppler-free resonance dip is observed in the dual-frequency scheme, and a significant improvement of frequency discrimination curve is acquired due to the coherent population trapping (CPT) effect. The influence of the static magnetic field and laser intensity on the spectroscopy is studied in both single- and dual-frequency schemes. After locking the laser frequency to the 87RbD1 line in the dual-frequency stabilization scheme, the beat note fractional frequency stability is at the level of 7×10-12 at 1 s integration time. This technique can be used in various applications, such as CPT atomic clocks, laser spectroscopy, quantum optics, and laser-cooling experiments.

4.
J Opt Soc Am A Opt Image Sci Vis ; 37(9): 1480-1489, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32902438

RESUMEN

As a kind of typical self-accelerating laser beam, Airy beams have attracted much attention due to their fascinating properties and various potential applications. In this work, we carry out a full vector wave analysis of Airy beams upon reflection and refraction. A hybrid method based on the angular spectrum representation and vector potential in the Lorenz gauge is introduced to describe the vectorial structure of Airy beams upon reflection and refraction. The explicit analytical expressions for the electric and magnetic field components of arbitrarily incident Airy beams reflected and refracted at an air-medium interface are derived in detail. Local-field patterns and magnitude profiles with different parameters are displayed. The analytical formulas obtained in this work can be practically applied to explore the local dynamical characteristics, including the energy, momentum, spin, and orbital angular momentum of Airy beams upon reflection and refraction.

5.
Appl Opt ; 59(32): 9995-9998, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33175772

RESUMEN

We present a simple and effective technique for coupling free-space laser beams into polarization maintaining fibers (PMFs) with high coupling efficiency. We measure both input and output laser beam sizes near the PMF by using the knife-edge method and build a suitable two-lens system for beam shaping according to the difference between those two beam sizes. For tapered amplifiers, we achieve high coupling efficiency above 70% with the help of the seeding mirrors. For external cavity diode lasers, we obtain high coupling efficiency above 80%. In addition, we demonstrate that theoretical maximum coupling efficiency can be approached by using a mode-filtered beam. Our technique is easy to implement and suitable for many applications such as coherent optical communication, atomic physics experiments, and precision measurements.

6.
Carbon N Y ; 116: 191-200, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28603293

RESUMEN

Multiwall carbon nanotubes (MWCNTs) are nanofillers used in consumer and structural polymeric products to enhance a variety of properties. Under weathering, the polymer matrix will degrade and the nanofillers may be released from the products potentially impacting ecological or human health. In this study, we investigated the degradation of a 0.72 % (by mass) MWCNT/amine-cured epoxy nanocomposite irradiated with high intensity ultraviolet (UV) light at various doses, the effects of UV exposure on the surface accumulation and potential release of MWCNTs, and possible mechanisms for the release resistance of the MWCNT surface layer formed on nanocomposites by UV irradiation. Irradiated samples were characterized for chemical degradation, mass loss, surface morphological changes, and MWCNT release using a variety of analytical techniques. Under 295 nm to 400 nm UV radiation up to a dose of 4865 MJ/m2, the nanocomposite matrix underwent photodegradation, resulting in formation of a dense, entangled MWCNT network structure on the surface. However, no MWCNT release was detected, even at very high UV doses, suggesting that the MWCNT surface layer formed from UV irradiation of polymer nanocomposites resist release. Four possible release resistance mechanisms of the UV-induced MWCNT surface layer are presented and discussed.

7.
Nanotechnology ; 26(8): 085703, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25649345

RESUMEN

Despite many studies of subsurface imaging of carbon nanotube (CNT)-polymer composites via scanning electron microscopy (SEM), significant controversy exists concerning the imaging depth and contrast mechanisms. We studied CNT-polyimide composites and, by three-dimensional reconstructions of captured stereo-pair images, determined that the maximum SEM imaging depth was typically hundreds of nanometers. The contrast mechanisms were investigated over a broad range of beam accelerating voltages from 0.3 to 30 kV, and ascribed to modulation by embedded CNTs of the effective secondary electron (SE) emission yield at the polymer surface. This modulation of the SE yield is due to non-uniform surface potential distribution resulting from current flows due to leakage and electron beam induced current. The importance of an external electric field on SEM subsurface imaging was also demonstrated. The insights gained from this study can be generally applied to SEM nondestructive subsurface imaging of conducting nanostructures embedded in dielectric matrices such as graphene-polymer composites, silicon-based single electron transistors, high resolution SEM overlay metrology or e-beam lithography, and have significant implications in nanotechnology.

8.
Front Plant Sci ; 15: 1381491, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38685964

RESUMEN

Drought is a major stress affecting rice yields. Combining partial root-zone drying (PRD) and different nitrogen fertilizers reduces the damage caused by water stress in rice. However, the underlying molecular mechanisms remain unclear. In this study, we combined treatments with PRD and ammonia:nitrate nitrogen at 0:100 (PRD0:100) and 50:50 (PRD50:50) ratios or PEG and nitrate nitrogen at 0:100 (PEG0:100) ratios in rice. Physiological, transcriptomic, and metabolomic analyses were performed on rice leaves to identify key genes involved in water stress tolerance under different nitrogen forms and PRD pretreatments. Our results indicated that, in contrast to PRD0:100, PRD50:50 elevated the superoxide dismutase activity in leaves to accelerate the scavenging of ROS accumulated by osmotic stress, attenuated the degree of membrane lipid peroxidation, stabilized photosynthesis, and elevated the relative water content of leaves to alleviate the drought-induced osmotic stress. Moreover, the alleviation ability was better under PRD50:50 treatment than under PRD0:100. Integrated transcriptome and metabolome analyses of PRD0:100 vs PRD50:50 revealed that the differences in PRD involvement in water stress tolerance under different nitrogen pretreatments were mainly in photosynthesis, oxidative stress, nitrogen metabolism process, phytohormone signaling, and biosynthesis of other secondary metabolites. Some key genes may play an important role in these pathways, including OsGRX4, OsNDPK2, OsGS1;1, OsNR1.2, OsSUS7, and YGL8. Thus, the osmotic stress tolerance mediated by PRD and nitrogen cotreatment is influenced by different nitrogen forms. Our results provide new insights into osmotic stress tolerance mediated by PRD and nitrogen cotreatment, demonstrate the essential role of nitrogen morphology in PRD-induced molecular regulation, and identify genes that contribute to further improving stress tolerance in rice.

9.
Nat Commun ; 15(1): 3893, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719799

RESUMEN

Maintaining food safety and quality is critical for public health and food security. Conventional food preservation methods, such as pasteurization and dehydration, often change the overall organoleptic quality of the food products. Herein, we demonstrate a method that affects only a thin surface layer of the food, using beef as a model. In this method, Joule heating is generated by applying high electric power to a carbon substrate in <1 s, which causes a transient increase of the substrate temperature to > ~2000 K. The beef surface in direct contact with the heating substrate is subjected to ultra-high temperature flash heating, leading to the formation of a microbe-inactivated, dehydrated layer of ~100 µm in thickness. Aerobic mesophilic bacteria, Enterobacteriaceae, yeast and mold on the treated samples are inactivated to a level below the detection limit and remained low during room temperature storage of 5 days. Meanwhile, the product quality, including visual appearance, texture, and nutrient level of the beef, remains mostly unchanged. In contrast, microorganisms grow rapidly on the untreated control samples, along with a rapid deterioration of the meat quality. This method might serve as a promising preservation technology for securing food safety and quality.


Asunto(s)
Microbiología de Alimentos , Conservación de Alimentos , Animales , Bovinos , Conservación de Alimentos/métodos , Microbiología de Alimentos/métodos , Carne/microbiología , Calor , Carne Roja/microbiología , Calefacción , Inocuidad de los Alimentos/métodos
10.
Front Plant Sci ; 14: 1156514, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37360728

RESUMEN

Partial root-zone drying (PRD) is an effective water-saving irrigation strategy that improves stress tolerance and facilitates efficient water use in several crops. It has long been considered that abscisic acid (ABA)-dependent drought resistance may be involved during partial root-zone drying. However, the molecular mechanisms underlying PRD-mediated stress tolerance remain unclear. It's hypothesized that other mechanisms might contribute to PRD-mediated drought tolerance. Here, rice seedlings were used as a research model and the complex transcriptomic and metabolic reprogramming processes were revealed during PRD, with several key genes involved in osmotic stress tolerance identified by using a combination of physiological, transcriptome, and metabolome analyses. Our results demonstrated that PRD induces transcriptomic alteration mainly in the roots but not in the leaves and adjusts several amino-acid and phytohormone metabolic pathways to maintain the balance between growth and stress response compared to the polyethylene glycol (PEG)-treated roots. Integrated analysis of the transcriptome and metabolome associated the co-expression modules with PRD-induced metabolic reprogramming. Several genes encoding the key transcription factors (TFs) were identified in these co-expression modules, highlighting several key TFs, including TCP19, WRI1a, ABF1, ABF2, DERF1, and TZF7, involved in nitrogen metabolism, lipid metabolism, ABA signaling, ethylene signaling, and stress regulation. Thus, our work presents the first evidence that molecular mechanisms other than ABA-mediated drought resistance are involved in PRD-mediated stress tolerance. Overall, our results provide new insights into PRD-mediated osmotic stress tolerance, clarify the molecular regulation induced by PRD, and identify genes useful for further improving water-use efficiency and/or stress tolerance in rice.

11.
Nanotechnology ; 21(22): 225702, 2010 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-20453284

RESUMEN

Subsurface characterization of carbon nanotubes (CNTs) dispersed in free-standing polymer composite films was achieved via quantitative electric force microscopy (EFM). The effects of relative humidity, EFM probe geometry, tip-sample distance and bias voltage on the EFM contrast were studied. Non-parabolic voltage dependence of the EFM signal of subsurface CNTs in polymer composites was observed and a new mechanism was proposed taking consideration of capacitive coupling as well as coulombic coupling. We anticipate that this quantitative EFM technique will be a useful tool for non-destructive subsurface characterization of high dielectric constant nanostructures in low dielectric constant matrices.

12.
Environ Sci Pollut Res Int ; 23(13): 12976-82, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26996909

RESUMEN

Batch experiments were conducted to investigate cadmium(II) (Cd(II)) adsorption by two variable-charge soils (an Oxisol and an Ultisol) as influenced by the presence of pectin. When pectin dosage was less than 30 g kg(-1), the increase in Cd(II) adsorption with the increasing dose of pectin was greater than that when the pectin dosage was >30 g kg(-1). Although both Langmuir and Freundlich equations fitted the adsorption isotherms of Cd(II) and electrostatic adsorption data of Cd(II) by the two soils well, the Langmuir equation showed a better fit. The increase in the maximum total adsorption of Cd(II) induced by pectin was almost equal in both the soils, whereas the increase in the maximum electrostatic adsorption of Cd(II) was greater in the Oxisol than in the Ultisol because the former contained greater amounts of free Fe/Al oxides than the latter, which, in turn, led to a greater increase in the negative charge on the Oxisol. Therefore, the presence of pectin induced the increase in Cd(II) adsorption by the variable-charge soils mainly through the electrostatic mechanism. Pectin increased the adsorption of Cd(II) by the variable-charge soils and thus decreased the activity and mobility of Cd(II) in these soils.


Asunto(s)
Cadmio/análisis , Pectinas/química , Contaminantes del Suelo/análisis , Suelo/química , Adsorción , Cadmio/química , Concentración de Iones de Hidrógeno , Contaminantes del Suelo/química , Electricidad Estática
13.
ACS Appl Mater Interfaces ; 8(35): 23230-5, 2016 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-27468781

RESUMEN

Carbon nanotube composites are lightweight, multifunctional materials with readily adjustable mechanical and electrical properties-relevant to the aerospace, automotive, and sporting goods industries as high-performance structural materials. Here, we combine well-established and newly developed characterization techniques to demonstrate that ultraviolet (UV) light exposure provides a controllable means to enhance the electrical conductivity of the surface of a commercial carbon nanotube-epoxy composite by over 5 orders of magnitude. Our observations, combined with theory and simulations, reveal that the increase in conductivity is due to the formation of a concentrated layer of nanotubes on the composite surface. Our model implies that contacts between nanotube-rich microdomains dominate the conductivity of this layer at low UV dose, while tube-tube transport dominates at high UV dose. Further, we use this model to predictably pattern conductive traces with a UV laser, providing a facile approach for direct integration of lightweight conductors on nanocomposite surfaces.

14.
ACS Nano ; 9(6): 6050-8, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26030266

RESUMEN

Carbon nanotube (CNT) reinforced polymers are next-generation, high-performance, multifunctional materials with a wide array of promising applications. The successful introduction of such materials is hampered by the lack of a quantitative understanding of process-structure-property relationships. These relationships can be developed only through the detailed characterization of the nanoscale reinforcement morphology within the embedding medium. Here, we reveal the three-dimensional (3D) nanoscale morphology of high volume fraction (V(f)) aligned CNT/epoxy-matrix nanocomposites using energy-filtered electron tomography. We present an automated phase-identification method for fast, accurate, representative rendering of the CNT spatial arrangement in these low-contrast bimaterial systems. The resulting nanometer-scale visualizations provide quantitative information on the evolution of CNT morphology and dispersion state with increasing V(f), including network structure, CNT alignment, bundling and waviness. The CNTs are observed to exhibit a nonlinear increase in bundling and alignment and a decrease in waviness as a function of increasing V(f). Our findings explain previously observed discrepancies between the modeled and measured trends in bulk mechanical, electrical and thermal properties. The techniques we have developed for morphological quantitation are applicable to many low-contrast material systems.

17.
Nanotechnology ; 19(23): 235704, 2008 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-21825803

RESUMEN

The resolution of scanning surface potential microscopy (SSPM) is mainly limited by non-local electrostatic interactions due to the finite probe size. Here we present high resolution surface potential imaging with ultrasharp and high aspect ratio carbon nanotube (CNT) atomic force microscopy (AFM) probes fabricated via dielectrophoresis. Enhancement of surface potential contrast by several factors is reported for integrated circuit structures and purple membrane fragments for these CNT AFM probes as compared to conventional probes. In particular, ultrahigh lateral resolution (∼2 nm) surface potential images of self-assembled bacteriorhodopsin proteins are reported at ambient conditions, with the implication of label-free protein detection by SSPM techniques.

18.
Mol Ther ; 14(2): 192-201, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16698322

RESUMEN

Semiconductor nanocrystal quantum dots (QDs) allow long-term imaging in the cellular environment with high photostability. QD biolabeling techniques have previously been developed for tagging proteins and peptides as well as oligonucleotides. In this contribution, QD-decorated plasmid DNA was utilized for the first time for long-term intracellular and intranuclear tracking studies. Conjugation of plasmid DNA with phospholipid-coated QDs was accomplished using a peptide nucleic acid (PNA)-N-succinimidyl-3-(2-pyridylthio) propionate linker. Gel electrophoresis and confocal and atomic force microscopy (AFM) were used to confirm the structure of QD-DNA conjugates. AFM imaging also revealed that multiple QDs were attached in a cluster at the PNA-reactive site of the plasmid DNA. These QD-DNA conjugates were capable of expressing the reporter protein, enhanced green fluorescent protein, following transfection in Chinese hamster ovary (CHO-K1) cells with an efficiency of ca. 62%, which was comparable to the control (unconjugated) plasmid DNA.


Asunto(s)
ADN/metabolismo , Sondas Moleculares , Ácidos Nucleicos de Péptidos/metabolismo , Plásmidos , Puntos Cuánticos , Animales , Células CHO , Compuestos de Cadmio , Cricetinae , ADN/ultraestructura , Micelas , Microscopía de Fuerza Atómica , Microscopía Confocal , Fosfolípidos , Compuestos de Selenio , Sulfuros , Transfección , Compuestos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA