Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 900
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Biol Chem ; 300(2): 105610, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159847

RESUMEN

Many metabolic diseases are caused by disorders of lipid homeostasis. CIDEC, a lipid droplet (LD)-associated protein, plays a critical role in controlling LD fusion and lipid storage. However, regulators of CIDEC remain largely unknown. Here, we established a homogeneous time-resolved fluorescence (HTRF)-based high-throughput screening method and identified LPXN as a positive regulatory candidate for CIDEC. LPXN and Hic-5, the members of the Paxillin family, are focal adhesion adaptor proteins that contribute to the recruitment of specific kinases and phosphatases, cofactors, and structural proteins, participating in the transduction of extracellular signals into intracellular responses. Our data showed that Hic-5 and LPXN significantly increased the protein level of CIDEC and enhanced CIDEC stability not through triacylglycerol synthesis and FAK signaling pathways. Hic-5 and LPXN reduced the ubiquitination of CIDEC and inhibited its proteasome degradation pathway. Furthermore, Hic-5 and LPXN enlarged LDs and promoted lipid storage in adipocytes. Therefore, we identified Hic-5 and LPXN as novel regulators of CIDEC. Our current findings also suggest intervention with Hic-5 and LPXN might ameliorate ectopic fat storage by enhancing the lipid storage capacity of white adipose tissues.


Asunto(s)
Adipocitos , Proteínas Reguladoras de la Apoptosis , Moléculas de Adhesión Celular , Proteínas con Dominio LIM , Adipocitos/metabolismo , Gotas Lipídicas/metabolismo , Ubiquitinación , Células HEK293 , Células HeLa , Humanos , Proteínas con Dominio LIM/metabolismo , Moléculas de Adhesión Celular/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo
2.
J Cell Sci ; 136(15)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37461827

RESUMEN

Protein palmitoylation is a post-translational lipid modification of proteins. Accumulating evidence reveals that palmitoylation functions as a sorting signal to direct proteins to destinations; however, the sorting mechanism remains largely unknown. Here, we show that ARF6 plays a general role in targeting palmitoylated proteins from the Golgi to the plasma membrane (PM). Through shRNA screening, we identified ARF6 as the key small GTPase in targeting CD36, a palmitoylated protein, from the Golgi to the PM. We found that the N-terminal myristoylation of ARF6 is required for its binding with palmitoylated CD36, and the GTP-bound form of ARF6 facilitates the delivery of CD36 to the PM. Analysis of stable isotope labeling by amino acids in cell culture revealed that ARF6 might facilitate the sorting of 359 of the 531 palmitoylated PM proteins, indicating a general role of ARF6. Our study has thus identified a sorting mechanism for targeting palmitoylated proteins from the Golgi to the PM.


Asunto(s)
Aparato de Golgi , Proteínas de la Membrana , Membrana Celular/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Transporte de Proteínas
3.
Nano Lett ; 24(25): 7809-7818, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38874576

RESUMEN

Noncontact sensing technology serves as a pivotal medium for seamless data acquisition and intelligent perception in the era of the Internet of Things (IoT), bringing innovative interactive experiences to wearable human-machine interaction perception networks. However, the pervasive limitations of current noncontact sensing devices posed by harsh environmental conditions hinder the precision and stability of signals. In this study, the triboelectric nanopaper prepared by a phase-directed assembly strategy is presented, which possesses low charge transfer mobility (1618 cm2 V-1 s-1) and exceptional high-temperature stability. Wearable self-powered noncontact sensors constructed from triboelectric nanopaper operate stably under high temperatures (200 °C). Furthermore, a temperature warning system for workers in hazardous environments is demonstrated, capable of nonintrusively identifying harmful thermal stimuli and detecting motion status. This research not only establishes a technological foundation for accurate and stable noncontact sensing under high temperatures but also promotes the sustainable intelligent development of wearable IoT devices under extreme environments.

4.
Nano Lett ; 24(10): 3273-3281, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38427598

RESUMEN

As intelligent technology surges forward, wearable electronics have emerged as versatile tools for monitoring health and sensing our surroundings. Among these advancements, porous triboelectric materials have garnered significant attention for their lightness. However, these materials face the challenge of improving structural stability to further enhance the sensing accuracy of triboelectric sensors. In this study, a lightweight and strong porous cellulosic triboelectric material is designed by cell wall nanoengineering. By tailoring of the cell wall structure, the material shows a high mechanical strength of 51.8 MPa. The self-powered sensor constructed by this material has a high sensitivity of 33.61 kPa-1, a fast response time of 36 ms, and excellent pressure detection durability. Notably, the sensor still enables a high sensing performance after the porous cellulosic triboelectric material exposure to 200 °C and achieves real-time feedback of human motion, thereby demonstrating great potential in the field of wearable electronic devices.


Asunto(s)
Pared Celular , Dispositivos Electrónicos Vestibles , Humanos , Electrónica , Movimiento (Física) , Porosidad
5.
J Lipid Res ; 65(7): 100575, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38866327

RESUMEN

Lipids are components of cytomembranes that are involved in various biochemical processes. High-altitude hypoxic environments not only affect the body's energy metabolism, but these environments can also cause abnormal lipid metabolism involved in the hypoxia-induced cognitive impairment. Thus, comprehensive lipidomic profiling of the brain tissue is an essential step toward understanding the mechanism of cognitive impairment induced by hypoxic exposure. In the present study, mice showed reduced new-object recognition and spatial memory when exposed to hypobaric hypoxia for 1 day. Histomorphological staining revealed significant morphological and structural damage to the hippocampal tissue, along with prolonged exposure to hypobaric hypoxia. Dynamic lipidomics of the mouse hippocampus showed a significant shift in both the type and distribution of phospholipids, as verified by spatial lipid mapping. Collectively, a diverse and dynamic lipid composition in mice hippocampus was uncovered, which deepens our understanding of biochemical changes during sustained hypoxic exposure and could provide new insights into the cognitive decline induced by high-altitude hypoxia exposure.

6.
J Proteome Res ; 23(1): 3-15, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38018860

RESUMEN

The purpose of this study was to determine potential metabolic biomarkers and therapeutic drugs in the gingival tissue of individuals with periodontitis. Liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) were used to analyze the gingival tissue samples from 20 patients with severe periodontitis and 20 healthy controls. Differential metabolites were identified using variable important in projection (VIP) values from the orthogonal partial least squares discrimination analysis (OPLS-DA) model and then verified for significance between groups using a two-tailed Student's t test. In total, 65 metabolites were enriched in 33 metabolic pathways, with 40 showing a significant increase and 25 expressing a significant decrease. In addition, it was found that patients with severe periodontitis have abnormalities in metabolic pathways, such as glucose metabolism, purine metabolism, amino acid metabolism, and so on. Furthermore, based on a multidimensional analysis, 12 different metabolites may be the potential biomarkers of severe periodontitis. The experiment's raw data have been uploaded to the MetaboLights database, and the project number is MTBLS8357. Moreover, osteogenesis differentiation characteristics were detected in the selected metabolites. The findings may provide a basis for the study of diagnostic biomarkers and therapeutic metabolites in severe periodontitis.


Asunto(s)
Metabolómica , Periodontitis , Humanos , Metabolómica/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Metaboloma , Biomarcadores
7.
Appl Environ Microbiol ; : e0208223, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38899886

RESUMEN

Genetic engineering at the genomic scale provides a rapid means to evolve microbes for desirable traits. However, in many filamentous fungi, such trials are daunted by low transformation efficiency. Differentially expressed genes under certain conditions may contain important regulatory factors. Accordingly, although manipulating these subsets of genes only can largely reduce the time and labor, engineering at such a sub-genomic level may also be able to improve the microbial performance. Herein, first using the industrially important cellulase-producing filamentous fungus Trichoderma reesei as a model organism, we constructed suppression subtractive hybridization (SSH) libraries enriched with differentially expressed genes under cellulase induction (MM-Avicel) and cellulase repression conditions (MM-Glucose). The libraries, in combination with RNA interference, enabled sub-genomic engineering of T. reesei for enhanced cellulase production. The ability of T. reesei to produce endoglucanase was improved by 2.8~3.3-fold. In addition, novel regulatory genes (tre49304, tre120391, and tre123541) were identified to affect cellulase expression in T. reesei. Iterative manipulation using the same strategy further increased the yield of endoglucanase activity to 75.6 U/mL, which was seven times as high as that of the wild type (10.8 U/mL). Moreover, using Humicola insolens as an example, such a sub-genomic RNAi-assisted strain evolution proved to be also useful in other industrially important filamentous fungi. H. insolens is a filamentous fungus commonly used to produce catalase, albeit with similarly low transformation efficiency and scarce knowledge underlying the regulation of catalase expression. By combining SSH and RNAi, a strain of H. insolens producing 28,500 ± 288 U/mL of catalase was obtained, which was 1.9 times as high as that of the parent strain.IMPORTANCEGenetic engineering at the genomic scale provides an unparalleled advantage in microbial strain improvement, which has previously been limited only to the organisms with high transformation efficiency such as Saccharomyces cerevisiae and Escherichia coli. Herein, using the filamentous fungus Trichoderma reesei as a model organism, we demonstrated that the advantage of suppression subtractive hybridization (SSH) to enrich differentially expressed genes and the convenience of RNA interference to manipulate a multitude of genes could be combined to overcome the inadequate transformation efficiency. With this sub-genomic evolution strategy, T. reesei could be iteratively engineered for higher cellulase production. Intriguingly, Humicola insolens, a fungus with even little knowledge in gene expression regulation, was also improved for catalase production. The same strategy may also be expanded to engineering other microorganisms for enhanced production of proteins, organic acids, and secondary metabolites.

8.
New Phytol ; 241(4): 1510-1524, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38130037

RESUMEN

Brassinosteroids (BRs) are plant hormones that are essential in plant growth and development. BRASSINOSTEROID-INSENSITIVE 1 (BRI1) and BRI1 ASSOCIATED RECEPTOR KINASE 1 (BAK1), which are located on the plasma membrane, function as co-receptors that accept and transmit BR signals. PROHIBITIN 3 (PHB3) was identified in both BRI1 and BAK1 complexes by affinity purification and LC-MS/MS analysis. Biochemical data showed that BRI1/BAK1 interacted with PHB3 in vitro and in vivo. BRI1/BAK1 phosphorylated PHB3 in vitro. When the Thr-80 amino acid in PHB3 was mutated to Ala, the mutant protein was not phosphorylated by BRI1 and the mutant protein interaction with BRI1 was abolished in the yeast two-hybrid assay. BAK1 did not phosphorylate the mutant protein PHB3T54A . The loss-of-function phb3 mutant showed a weaker BR signal than the wild-type. Genetic analyses revealed that PHB3 is a BRI1/BAK1 downstream substrate that participates in BR signalling. PHB3 has five homozygous in tomato, and we named the closest to AtPHB3 as SlPHB3.1. Biochemical data showed that SlBRI1/SlSERK3A/SlSERK3B interacted with SlPHB3.1 and SlPHB3.3. The CRISPR-Cas9 method generated slphb3.1 mutant led to a BR signal stunted relatively in tomatoes. PHB3 is a new component of the BR signal pathway in both Arabidopsis and tomato.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Brasinoesteroides/metabolismo , Solanum lycopersicum/genética , Proteínas Quinasas/metabolismo , Fosforilación , Proteínas de Arabidopsis/metabolismo , Cromatografía Liquida , Prohibitinas , Espectrometría de Masas en Tándem , Transducción de Señal/fisiología , Proteínas Mutantes
9.
Stem Cells ; 41(1): 77-92, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36208284

RESUMEN

Hypoxia as a microenvironment or niche stimulates proliferation of neural stem cells (NSCs). However, the underlying mechanisms remain elusive. Autophagy is a protective mechanism by which recycled cellular components and energy are rapidly supplied to the cell under stress. Whether autophagy mediates the proliferation of NSCs under hypoxia and how hypoxia induces autophagy remain unclear. Here, we report that hypoxia facilitates embryonic NSC proliferation through HIF-1/mTORC1 signaling pathway-mediated autophagy. Initially, we found that hypoxia greatly induced autophagy in NSCs, while inhibition of autophagy severely impeded the proliferation of NSCs in hypoxia conditions. Next, we demonstrated that the hypoxia core regulator HIF-1 was necessary and sufficient for autophagy induction in NSCs. Considering that mTORC1 is a key switch that suppresses autophagy, we subsequently analyzed the effect of HIF-1 on mTORC1 activity. Our results showed that the mTORC1 activity was negatively regulated by HIF-1. Finally, we provided evidence that HIF-1 regulated mTORC1 activity via its downstream target gene BNIP3. The increased expression of BNIP3 under hypoxia enhanced autophagy activity and proliferation of NSCs, which was mediated by repressing the activity of mTORC1. We further illustrated that BNIP3 can interact with Rheb, a canonical activator of mTORC1. Thus, we suppose that the interaction of BNIP3 with Rheb reduces the regulation of Rheb toward mTORC1 activity, which relieves the suppression of mTORC1 on autophagy, thereby promoting the rapid proliferation of NSCs. Altogether, this study identified a new HIF-1/BNIP3-Rheb/mTORC1 signaling axis, which regulates the NSC proliferation under hypoxia through induction of autophagy.


Asunto(s)
Proteínas de la Membrana , Células-Madre Neurales , Humanos , Proteínas de la Membrana/genética , Hipoxia de la Célula , Hipoxia/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Autofagia , Células-Madre Neurales/metabolismo , Proliferación Celular , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
10.
Brain Behav Immun ; 116: 237-258, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38070618

RESUMEN

Vagus nerve stimulation (VNS) has been identified as an innovative immunosuppressive treatment strategy in rodent studies. However, its' clinical potential is still unclear. Therefore, we aimed to assess whether VNS can reduce inflammatory proteins and/or immune cells in humans, through a pre-registered systematic review and meta-analysis according to PRISMA guidelines. The databases Cochrane, Pubmed and World of Knowledge were searched in duplicate up to the 3rd of March 2022 and publications from identified clinical trial registrations were identified until 20th of August 2023. Studies were included if they provided peer-reviewed data for humans who received VNS as short-term (<=1 day) or long-term (>=2 days-365 days) stimulation and reported at least one cytokine or immune cell after treatment.Screening of title, abstract, full text, and data extraction was performed in duplicate by two independent reviewers. Data were pooled using a random-effects model and meta-regression was performed for moderating factors. Reporting bias was assessed. The standardized mean difference (Hedge's g) was used to indicate overall differences of cytokine data (mean and standard deviation or median and interquartile range at the study level) to test our a-priori hypothesis. The systematic review of 36 studies with 1135 participants (355 receiving a control/sham condition and 780 receiving VNS) revealed anti-inflammatory effects of VNS for cytokines in several reports, albeit often in subgroup analyses, but our meta-analyses of 26 studies did not confirm these findings. Although most cytokines were numerically reduced, the reduction did not reach statistical significance after VNS: not in the between-group comparisons (short-term: TNF-α: g = -0.21, p = 0.359; IL-6: g = -0.94, p = 0.112; long-term: TNF-α: g = -0.13, p = 0.196; IL-6: g = -0.67, p = 0.306); nor in the within-study designs (short-term: TNF-α: g = -0.45, p = 0.630; IL-6: g = 0.28, p = 0.840; TNF-α: g = -0.53, p = 0.297; IL-6:g = -0.02, p = 0.954). Only the subgroup analysis of 4 long-term studies with acute inflammation was significant: VNS decreased CRP significantly more than sham stimulation. Additional subgroup analyses including stimulation duration, stimulation method (invasive/non-invasive), immune stimulation, and study quality did not alter results. However, heterogeneity was high, and most studies had poor to fair quality. Given the low number of studies for each disease, a disease-specific analysis was not possible. In conclusion, while numeric effects were reported in individual studies, the current evidence does not substantiate the claim that VNS impacts inflammatory cytokines in humans. However, it may be beneficial during acute inflammatory events. To assess its full potential, high-quality studies and technological advances are required.


Asunto(s)
Estimulación del Nervio Vago , Humanos , Estimulación del Nervio Vago/métodos , Factor de Necrosis Tumoral alfa , Interleucina-6 , Citocinas/metabolismo , Antiinflamatorios , Nervio Vago
11.
Langmuir ; 40(19): 10107-10114, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38691012

RESUMEN

Boron nitride nanosheets (BNNS) are expected to be ideal fillers because of their high thermal conductivity and excellent electrical insulation. However, it is still an open challenge to produce BNNS on a large scale using ecofriendly solvents. Here, first, we demonstrate an effective liquid exfoliation method for producing BNNS via utilizing deep eutectic solvents (DES) composed of D,L-menthol and various acids with the assistance of ultrasonication. The results show that the BNNSs with sizes of 1-2 µm in width and 6-8 nm in thickness were successfully exfoliated with a DES formulation of D,L-menthol and decanoic acid. Second, the obtained BNNSs were used for fabricating 1,6-hexanediol diacrylate@polydopamine functionalized BNNS (HDDA@BNNSs-PDA) core-shell microspheres via a Pickering emulsion method. Furthermore, these microspheres were incorporated into a polyvinylidene fluoride (PVDF) matrix to construct 3D thermally conductive networks, leading to a substantial enhancement in the thermal conductivity of the resulting composites. Impressively, the composites with only 25 wt % of BNNS loading reach a high thermal conductivity of 3.20 W/m K, which is a 1500% increase over the pure polymer matrix. This work not only provides a significant way for producing BNNSs ecofriendly but also demonstrates a tactic for constructing 3D thermally conductive networks.

12.
BMC Infect Dis ; 24(1): 333, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509457

RESUMEN

BACKGROUND: Anopheles stephensi is native to Southeast Asia and the Arabian Peninsula and has emerged as an effective and invasive malaria vector. Since invasion was reported in Djibouti in 2012, the global invasion range of An. stephensi has been expanding, and its high adaptability to the environment and the ongoing development of drug resistance have created new challenges for malaria control. Climate change is an important factor affecting the distribution and transfer of species, and understanding the distribution of An. stephensi is an important part of malaria control measures, including vector control. METHODS: In this study, we collected existing distribution data for An. stephensi, and based on the SSP1-2.6 future climate data, we used the Biomod2 package in R Studio through the use of multiple different model methods such as maximum entropy models (MAXENT) and random forest (RF) in this study to map the predicted global An. stephensi climatically suitable areas. RESULTS: According to the predictions of this study, some areas where there are no current records of An. stephensi, showed significant areas of climatically suitable for An. stephensi. In addition, the global climatically suitability areas for An. stephensi are expanding with global climate change, with some areas changing from unsuitable to suitable, suggesting a greater risk of invasion of An. stephensi in these areas, with the attendant possibility of a resurgence of malaria, as has been the case in Djibouti. CONCLUSIONS: This study provides evidence for the possible invasion and expansion of An. stephensi and serves as a reference for the optimization of targeted monitoring and control strategies for this malaria vector in potential invasion risk areas.


Asunto(s)
Anopheles , Malaria , Humanos , Animales , Malaria/epidemiología , Malaria/prevención & control , Mosquitos Vectores
13.
Eur J Nutr ; 63(4): 1187-1201, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38366270

RESUMEN

PURPOSE: The aim of this study was to evaluate the effects of vitamin D and/or calcium supplementation on sleep quality in individuals with prediabetes. METHODS: A 24-week randomized controlled trial (RCT) was conducted in a 212 Chinese population with prediabetes. Participants were randomly assigned to four groups: vitamin D + calcium group (1600 IU/day + 500 mg/day, n = 53), vitamin D group (1600 IU/day, n = 54), calcium group (500 mg/day, n = 51), and control group (placebo, n = 54). The Pittsburgh Sleep Quality Index (PSQI) was used as the primary outcome to assess sleep quality. Questionnaires and fasting blood samples were collected at baseline and post-intervention for demographic assessment and correlation index analysis. RESULTS: After a 24-week intervention, a significant difference was observed in serum 25(OH)D concentration among the four groups (P < 0.05), and the total PSQI score in vitamin D + calcium group was lower compared to the preintervention levels. Subgroup analyses revealed improved sleep quality with calcium supplementation (P < 0.05) for specific groups, including women, individuals with a low baseline 25(OH)D level (< 30 ng/mL), and individuals in menopause. Moreover, correlation analysis revealed a negative correlation between the extent of change in sleep efficiency scores before and after the calcium intervention and the degree of change in insulin efficiency scores (r = - 0.264, P = 0.007), as well as the magnitude of change in islet beta cell function (r = - 0.304, P = 0.002). CONCLUSIONS: The combined intervention of vitamin D and calcium, as well as calcium interventions alone, exhibits substantial potential for improving sleep quality in individuals with prediabetes. CLINICAL TRIAL REGISTRATION: The trial was registered in August 2019 as ChiCTR190002487.


Asunto(s)
Suplementos Dietéticos , Estado Prediabético , Calidad del Sueño , Vitamina D , Humanos , Estado Prediabético/complicaciones , Estado Prediabético/dietoterapia , Estado Prediabético/sangre , Femenino , Vitamina D/sangre , Vitamina D/administración & dosificación , Masculino , Persona de Mediana Edad , Calcio de la Dieta/administración & dosificación , Adulto , Anciano , China , Método Doble Ciego , Vitaminas/administración & dosificación , Vitaminas/farmacología
14.
Sleep Breath ; 28(3): 1459-1464, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38374476

RESUMEN

OBJECTIVE: To investigate the prevalence and associated factors of excessive daytime sleepiness (EDS) among rural-dwelling Chinese older adults. METHODS: We collected data on demographic, epidemiological, and clinical factors via in-person interviews and clinical examinations following a structured questionnaire. The 15-item Geriatric Depression Scale (GDS-15) was used to assess depressive symptoms, the Berlin questionnaire (BQ) to assess obstructive sleep apnea (OSA) risk; and the Epworth Sleepiness Scale (ESS) to assess sleep characteristics. EDS was defined as the total ESS score > 10. RESULTS: This population-based study engaged 4845 participants (age ≥ 65 years, 57.3% female) in the 2018 examination of the Multimodal Interventions to Delay Dementia and Disability in Rural China. The prevalence of EDS was 9.3% in the total sample, 8.3% in females, and 10.6% in males, and the prevalence decreased with advanced age. Logistic regression analysis revealed that EDS was significantly associated with age (multivariable-adjusted odds ratio [OR] = 0.97; 95% confidence interval [CI] 0.95-0.99), female sex (0.53; 0.36-0.77), hypertension (0.68; 0.54-0.85), depressive symptoms (2.68; 2.07-3.46), high OSA risk (2.11; 1.69-2.63), and poor sleep quality (2.12; 1.60-2.82). CONCLUSION: EDS affects nearly one-tenth of rural older adults in China. Older age, female sex, and hypertension were associated with a decreased likelihood of EDS, while depressive symptoms, high OSA risk, and poor sleep quality were correlated with an elevated likelihood of EDS.


Asunto(s)
Trastornos de Somnolencia Excesiva , Población Rural , Humanos , Femenino , Masculino , Anciano , Trastornos de Somnolencia Excesiva/epidemiología , Trastornos de Somnolencia Excesiva/diagnóstico , China/epidemiología , Población Rural/estadística & datos numéricos , Prevalencia , Factores de Riesgo , Anciano de 80 o más Años , Apnea Obstructiva del Sueño/epidemiología , Apnea Obstructiva del Sueño/diagnóstico , Estudios Transversales
15.
BMC Pulm Med ; 24(1): 312, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961438

RESUMEN

BACKGROUND: The Omicron variant broke out in China at the end of 2022, causing a considerable number of severe cases and even deaths. The study aimed to identify risk factors for death in patients hospitalized with SARS-CoV-2 Omicron infection and to establish a scoring system for predicting mortality. METHODS: 1817 patients were enrolled at eight hospitals in China from December 2022 to May 2023, including 815 patients in the training group and 1002 patients in the validation group. Forty-six clinical and laboratory features were screened using LASSO regression and multivariable logistic regression. RESULTS: In the training set, 730 patients were discharged and 85 patients died. In the validation set, 918 patients were discharged and 84 patients died. LASSO regression identified age, levels of interleukin (IL) -6, blood urea nitrogen (BUN), lactate dehydrogenase (LDH), and D-dimer; neutrophil count, neutrophil-to-lymphocyte ratio (NLR) as associated with mortality. Multivariable logistic regression analysis showed that older age, IL-6, BUN, LDH and D-dimer were significant independent risk factors. Based on these variables, a scoring system was developed with a sensitivity of 83.6% and a specificity of 83.5% in the training group, and a sensitivity of 79.8% and a sensitivity of 83.0% in the validation group. CONCLUSIONS: A scoring system based on age, IL-6, BUN, LDH and D-dime can help clinicians identify patients with poor prognosis early.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/mortalidad , Masculino , Femenino , Persona de Mediana Edad , China/epidemiología , Anciano , Factores de Riesgo , Hospitalización/estadística & datos numéricos , Adulto , Pronóstico , Productos de Degradación de Fibrina-Fibrinógeno/análisis , Productos de Degradación de Fibrina-Fibrinógeno/metabolismo , Factores de Edad , Modelos Logísticos , Neutrófilos , Nitrógeno de la Urea Sanguínea , L-Lactato Deshidrogenasa/sangre
16.
J Fish Dis ; : e13986, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38879868

RESUMEN

Aeromonas veronii is an important pathogen found in various aquatic environments and products, posing a threat to public health. The Hanks-like serine/threonine protein kinase is closely linked to the pathogenesis of pathogenic bacteria, but the exact role of YihE in A. veronii remains still unknown. To study the specific function of the YihE kinase, we constructed a knockout mutant of the yihE gene in A. veronii. The deletion of the yihE gene resulted in changes to the metabolism of L-arginine-AMC and acetic acid, as well as enhanced resistance to ampicillin and kanamycin in A. veronii. Additionally, the ΔyihE strain demonstrated a 1.4-fold increase in biofilm formation ability and a 1.8-fold decrease in adhesion and invasion to EPCs when compared to the wild-type strain. A significant decrease in cytotoxicity was observed at 2 and 3 h post-infection with EPCs compared to the wild-type strain. Additionally, the deletion of the yihE gene was associated with a significant decrease in motility of the strain. Furthermore, the deletion of the yihE gene resulted in a 1.44-fold increase in the LD50 of A. veronii in zebrafish. These findings offer valuable insights into the pathogenic mechanisms of A. veronii.

17.
Immunopharmacol Immunotoxicol ; 46(1): 33-39, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37681978

RESUMEN

OBJECTIVE: As a frequent complication of diabetes mellitus (DM), diabetic retinopathy (DR) is now one of the major causes of blindness. Recent reports have shown that retinal pigment epithelial cell (RPEC) damage plays an essential part in DR development and progression. This work intended to explore the potential effects of Gigantol on high glucose (HG)-stimulated RPEC damage and identify potential mechanisms. METHODS: Cell viability, cell damage, and cell apoptosis were evaluated by CCK-8, lactate dehydrogenase (LDH) and flow cytometry assays. The levels of oxidative stress biomarkers and pro-inflammatory cytokines were assessed using corresponding commercial kits and ELISA. Additionally, the levels of MTDH and NF-kB signaling pathway-related proteins were detected by western blotting. RESULTS: Gigantol dose-dependently enhanced cell viability and decreased apoptosis in HG-challenged ARPE-19 cells. Also, Gigantol notably relieved oxidative stress and inflammatory responses in ARPE-19 cells under HG conditions. Gigantol dose-dependently suppressed MTDH expression. In addition, MTDH restoration partially counteracted the protective effects of Gigantol on ARPE-19 cells subject to HG treatment. Mechanically, Gigantol inactivated the NF-kB signaling pathway, which was partly restored after MTDH overexpression. CONCLUSION: Our findings suggested that Gigantol protected against HG-induced RPEC damage by inactivating the NF-kB signaling via MTDH inhibition, offering a potent therapeutic drug for DR treatment.


Asunto(s)
Bibencilos , Retinopatía Diabética , Guayacol/análogos & derivados , FN-kappa B , Humanos , FN-kappa B/metabolismo , Glucosa/toxicidad , Glucosa/metabolismo , Transducción de Señal , Estrés Oxidativo , Apoptosis , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/metabolismo , Células Epiteliales , Pigmentos Retinianos/metabolismo , Pigmentos Retinianos/farmacología , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/metabolismo
18.
Entropy (Basel) ; 26(5)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38785654

RESUMEN

We proposed and verified a scheme of chaos synchronization for integrated five-section semiconductor lasers with matching parameters. The simulation results demonstrated that the integrated five-section semiconductor laser could generate a chaotic signal within a large parameter range of the driving currents of five sections. Subsequently, chaos synchronization between two integrated five-section semiconductor lasers with matched parameters was realized by using a common noise signal as a driver. Moreover, it was found that the synchronization was sensitive to the current mismatch in all five sections, indicating that the driving currents of the five sections could be used as keys of chaotic optical communication. Therefore, this synchronization scheme provides a candidate to increase the dimension of key space and enhances the security of the system.

19.
J Cell Biochem ; 124(9): 1379-1390, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37565526

RESUMEN

Numerous studies have revealed the profound impact of microRNAs on regulating skeletal muscle development and regeneration. However, the biological function and regulation mechanism of miR-222-3p in skeletal muscle remains largely unknown. In this study, miR-222-3p was found to be abundantly expressed in the impaired skeletal muscles, indicating that it might have function in the development and regeneration process of the skeletal muscle. MiR-222-3p overexpression impeded C2C12 myoblast proliferation and myogenic differentiation, whereas inhibition of miR-222-3p got the opposite results. The dual-luciferase reporter assay showed that insulin receptor substrate-1 (IRS-1) was the target gene of miR-222-3p. We next found that knockdown of IRS-1 could obviously suppress C2C12 myoblast proliferation and differentiation. Additionally, miR-222-3p-induced repression of myoblast proliferation and differentiation was verified to be associated with a decrease in phosphoinositide 3-kinase (PI3K)-Akt signaling. Overall, we demonstrated that miR-222-3p inhibited C2C12 cells myogenesis via IRS-1/PI3K/Akt pathway. Therefore, miR-222-3p may be used as a therapeutic target for alleviating muscle loss caused by inherited and nonhereditary diseases.


Asunto(s)
MicroARNs , Proteínas Proto-Oncogénicas c-akt , Animales , Ratones , Diferenciación Celular/genética , Proliferación Celular/genética , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , MicroARNs/metabolismo , Desarrollo de Músculos/genética , Mioblastos/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo
20.
EMBO J ; 38(8)2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30858281

RESUMEN

SREBPs are master regulators of lipid homeostasis and undergo sterol-regulated export from ER to Golgi apparatus for processing and activation via COPII-coated vesicles. While COPII recognizes SREBP through its escort protein SCAP, factor(s) specifically promoting SREBP/SCAP loading to the COPII machinery remains unknown. Here, we show that the ER/lipid droplet-associated protein Cideb selectively promotes the loading of SREBP/SCAP into COPII vesicles. Sterol deprivation releases SCAP from Insig and enhances ER export of SREBP/SCAP by inducing SCAP-Cideb interaction, thereby modulating sterol sensitivity. Moreover, Cideb binds to the guanine nucleotide exchange factor Sec12 to enrich SCAP/SREBP at ER exit sites, where assembling of COPII complex initiates. Loss of Cideb inhibits the cargo loading of SREBP/SCAP, reduces SREBP activation, and alleviates diet-induced hepatic steatosis. Our data point to a linchpin role of Cideb in regulated ER export of SREBP and lipid homeostasis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/fisiología , Retículo Endoplásmico/fisiología , Aparato de Golgi/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Esteroles/farmacología , Animales , Proteínas Reguladoras de la Apoptosis/genética , Vesículas Cubiertas por Proteínas de Revestimiento/efectos de los fármacos , Vesículas Cubiertas por Proteínas de Revestimiento/fisiología , Retículo Endoplásmico/efectos de los fármacos , Aparato de Golgi/efectos de los fármacos , Células HEK293 , Células Hep G2 , Homeostasis , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Transporte de Proteínas , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA