Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.204
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(7): 1719-1732.e14, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38513663

RESUMEN

The glycine transporter 1 (GlyT1) plays a crucial role in the regulation of both inhibitory and excitatory neurotransmission by removing glycine from the synaptic cleft. Given its close association with glutamate/glycine co-activated NMDA receptors (NMDARs), GlyT1 has emerged as a central target for the treatment of schizophrenia, which is often linked to hypofunctional NMDARs. Here, we report the cryo-EM structures of GlyT1 bound with substrate glycine and drugs ALX-5407, SSR504734, and PF-03463275. These structures, captured at three fundamental states of the transport cycle-outward-facing, occluded, and inward-facing-enable us to illustrate a comprehensive blueprint of the conformational change associated with glycine reuptake. Additionally, we identified three specific pockets accommodating drugs, providing clear insights into the structural basis of their inhibitory mechanism and selectivity. Collectively, these structures offer significant insights into the transport mechanism and recognition of substrate and anti-schizophrenia drugs, thus providing a platform to design small molecules to treat schizophrenia.


Asunto(s)
Proteínas de Transporte de Glicina en la Membrana Plasmática , Humanos , Transporte Biológico , Glicina/metabolismo , Proteínas de Transporte de Glicina en la Membrana Plasmática/química , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Proteínas de Transporte de Glicina en la Membrana Plasmática/ultraestructura , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/metabolismo , Transmisión Sináptica , Imidazoles/química , Sarcosina/análogos & derivados , Piperidinas/química
2.
Cell ; 186(6): 1230-1243.e14, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36931246

RESUMEN

Although Ca2+ has long been recognized as an obligatory intermediate in visual transduction, its role in plant phototransduction remains elusive. Here, we report a Ca2+ signaling that controls photoreceptor phyB nuclear translocation in etiolated seedlings during dark-to-light transition. Red light stimulates acute cytosolic Ca2+ increases via phyB, which are sensed by Ca2+-binding protein kinases, CPK6 and CPK12 (CPK6/12). Upon Ca2+ activation, CPK6/12 in turn directly interact with and phosphorylate photo-activated phyB at Ser80/Ser106 to initiate phyB nuclear import. Non-phosphorylatable mutation, phyBS80A/S106A, abolishes nuclear translocation and fails to complement phyB mutant, which is fully restored by combining phyBS80A/S106A with a nuclear localization signal. We further show that CPK6/12 function specifically in the early phyB-mediated cotyledon expansion, while Ser80/Ser106 phosphorylation generally governs phyB nuclear translocation. Our results uncover a biochemical regulatory loop centered in phyB phototransduction and provide a paradigm for linking ubiquitous Ca2+ increases to specific responses in sensory stimulus processing.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Fitocromo B/genética , Fitocromo B/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Calcio/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Luz , Fototransducción , Mutación
3.
Cell ; 185(22): 4082-4098.e22, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36198318

RESUMEN

The mechanism that initiates autophagosome formation on the ER in multicellular organisms is elusive. Here, we showed that autophagy stimuli trigger Ca2+ transients on the outer surface of the ER membrane, whose amplitude, frequency, and duration are controlled by the metazoan-specific ER transmembrane autophagy protein EPG-4/EI24. Persistent Ca2+ transients/oscillations on the cytosolic ER surface in EI24-depleted cells cause accumulation of FIP200 autophagosome initiation complexes on the ER. This defect is suppressed by attenuating ER Ca2+ transients. Multi-modal SIM analysis revealed that Ca2+ transients on the ER trigger the formation of dynamic and fusion-prone liquid-like FIP200 puncta. Starvation-induced Ca2+ transients on lysosomes also induce FIP200 puncta that further move to the ER. Multiple FIP200 puncta on the ER, whose association depends on the ER proteins VAPA/B and ATL2/3, assemble into autophagosome formation sites. Thus, Ca2+ transients are crucial for triggering phase separation of FIP200 to specify autophagosome initiation sites in metazoans.


Asunto(s)
Autofagosomas , Calcio , Animales , Autofagosomas/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Proteínas de Ciclo Celular/metabolismo
4.
Cell ; 180(1): 122-134.e10, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31866066

RESUMEN

Voltage-gated sodium channel Nav1.5 generates cardiac action potentials and initiates the heartbeat. Here, we report structures of NaV1.5 at 3.2-3.5 Å resolution. NaV1.5 is distinguished from other sodium channels by a unique glycosyl moiety and loss of disulfide-bonding capability at the NaVß subunit-interaction sites. The antiarrhythmic drug flecainide specifically targets the central cavity of the pore. The voltage sensors are partially activated, and the fast-inactivation gate is partially closed. Activation of the voltage sensor of Domain III allows binding of the isoleucine-phenylalanine-methionine (IFM) motif to the inactivation-gate receptor. Asp and Ala, in the selectivity motif DEKA, line the walls of the ion-selectivity filter, whereas Glu and Lys are in positions to accept and release Na+ ions via a charge-delocalization network. Arrhythmia mutation sites undergo large translocations during gating, providing a potential mechanism for pathogenic effects. Our results provide detailed insights into Nav1.5 structure, pharmacology, activation, inactivation, ion selectivity, and arrhythmias.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/ultraestructura , Animales , Línea Celular , Células HEK293 , Corazón/fisiología , Humanos , Activación del Canal Iónico/fisiología , Potenciales de la Membrana/fisiología , Técnicas de Placa-Clamp/métodos , Ratas , Sodio/metabolismo , Canales de Sodio/química , Relación Estructura-Actividad , Canales de Sodio Activados por Voltaje/metabolismo , Canales de Sodio Activados por Voltaje/ultraestructura
5.
Nat Rev Mol Cell Biol ; 22(11): 733-750, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34302147

RESUMEN

Autophagy is a versatile degradation system for maintaining cellular homeostasis whereby cytosolic materials are sequestered in a double-membrane autophagosome and subsequently delivered to lysosomes, where they are broken down. In multicellular organisms, newly formed autophagosomes undergo a process called 'maturation', in which they fuse with vesicles originating from endolysosomal compartments, including early/late endosomes and lysosomes, to form amphisomes, which eventually become degradative autolysosomes. This fusion process requires the concerted actions of multiple regulators of membrane dynamics, including SNAREs, tethering proteins and RAB GTPases, and also transport of autophagosomes and late endosomes/lysosomes towards each other. Multiple mechanisms modulate autophagosome maturation, including post-translational modification of key components, spatial distribution of phosphoinositide lipid species on membranes, RAB protein dynamics, and biogenesis and function of lysosomes. Nutrient status and various stresses integrate into the autophagosome maturation machinery to coordinate the progression of autophagic flux. Impaired autophagosome maturation is linked to the pathogenesis of various human diseases, including neurodegenerative disorders, cancer and myopathies. Furthermore, invading pathogens exploit various strategies to block autophagosome maturation, thus evading destruction and even subverting autophagic vacuoles (autophagosomes, amphisomes and autolysosomes) for survival, growth and/or release. Here, we discuss the recent progress in our understanding of the machinery and regulation of autophagosome maturation, the relevance of these mechanisms to human pathophysiology and how they are harnessed by pathogens for their benefit. We also provide perspectives on targeting autophagosome maturation therapeutically.


Asunto(s)
Autofagosomas/genética , Autofagia/genética , Enfermedades Neurodegenerativas/genética , Vesículas Transportadoras/genética , Endosomas/genética , Humanos , Lisosomas/genética , Enfermedades Neurodegenerativas/patología , Fagosomas/genética , Procesamiento Proteico-Postraduccional/genética , Proteínas SNARE/genética , Proteínas de Unión al GTP rab/genética
6.
Cell ; 170(6): 1234-1246.e14, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28823560

RESUMEN

AMPA receptors mediate fast excitatory neurotransmission in the mammalian brain and transduce the binding of presynaptically released glutamate to the opening of a transmembrane cation channel. Within the postsynaptic density, however, AMPA receptors coassemble with transmembrane AMPA receptor regulatory proteins (TARPs), yielding a receptor complex with altered gating kinetics, pharmacology, and pore properties. Here, we elucidate structures of the GluA2-TARP γ2 complex in the presence of the partial agonist kainate or the full agonist quisqualate together with a positive allosteric modulator or with quisqualate alone. We show how TARPs sculpt the ligand-binding domain gating ring, enhancing kainate potency and diminishing the ensemble of desensitized states. TARPs encircle the receptor ion channel, stabilizing M2 helices and pore loops, illustrating how TARPs alter receptor pore properties. Structural and computational analysis suggests the full agonist and modulator complex harbors an ion-permeable channel gate, providing the first view of an activated AMPA receptor.


Asunto(s)
Canales de Calcio/química , Receptores AMPA/química , Animales , Microscopía por Crioelectrón , Agonistas de Aminoácidos Excitadores/química , Agonistas de Aminoácidos Excitadores/farmacología , Ácido Kaínico/química , Ácido Kaínico/farmacología , Modelos Moleculares , Ácido Quiscuálico/química , Ácido Quiscuálico/farmacología , Ratas , Receptores AMPA/agonistas
7.
Nature ; 626(7998): 427-434, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38081299

RESUMEN

Vesicular monoamine transporter 2 (VMAT2) accumulates monoamines in presynaptic vesicles for storage and exocytotic release, and has a vital role in monoaminergic neurotransmission1-3. Dysfunction of monoaminergic systems causes many neurological and psychiatric disorders, including Parkinson's disease, hyperkinetic movement disorders and depression4-6. Suppressing VMAT2 with reserpine and tetrabenazine alleviates symptoms of hypertension and Huntington's disease7,8, respectively. Here we describe cryo-electron microscopy structures of human VMAT2 complexed with serotonin and three clinical drugs at 3.5-2.8 Å, demonstrating the structural basis for transport and inhibition. Reserpine and ketanserin occupy the substrate-binding pocket and lock VMAT2 in cytoplasm-facing and lumen-facing states, respectively, whereas tetrabenazine binds in a VMAT2-specific pocket and traps VMAT2 in an occluded state. The structures in three distinct states also reveal the structural basis of the VMAT2 transport cycle. Our study establishes a structural foundation for the mechanistic understanding of substrate recognition, transport, drug inhibition and pharmacology of VMAT2 while shedding light on the rational design of potential therapeutic agents.


Asunto(s)
Microscopía por Crioelectrón , Proteínas de Transporte Vesicular de Monoaminas , Humanos , Sitios de Unión , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Ketanserina/química , Ketanserina/metabolismo , Ketanserina/farmacología , Reserpina/química , Reserpina/metabolismo , Reserpina/farmacología , Serotonina/química , Serotonina/metabolismo , Especificidad por Sustrato , Tetrabenazina/química , Tetrabenazina/metabolismo , Tetrabenazina/farmacología , Proteínas de Transporte Vesicular de Monoaminas/antagonistas & inhibidores , Proteínas de Transporte Vesicular de Monoaminas/química , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/ultraestructura
8.
Nature ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38925147

RESUMEN

Perovskite solar cells (PSCs) with an "inverted" architecture are a key pathway for commercializing this emerging photovoltaic technology due to the better power conversion efficiency (PCE) and operational stability as compared to the "normal" device structure. Specifically, PCEs of the inverted PSCs have exceeded 25% owing to the development of improved self-assembled molecules (SAMs)1-5 and passivation strategies6-8. Nevertheless, poor wettability and agglomerations of SAMs9-12 will cause interfacial losses, impeding further improvement in PCE and stability. Herein, we report on molecular hybrid at the buried interface in inverted PSCs by co-assembling a multiple carboxylic acid functionalized aromatic compound of 4,4',4''-nitrilotribenzoicacid (NA) with a popular SAM of [4-(3,6-dime-thyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz) to improve the heterojunction interface. The molecular hybrid of Me-4PACz with NA could substantially improve the interfacial characteristics. The resulting inverted PSCs demonstrated a record-certified steady-state efficiency of 26.54%. Crucially, this strategy aligns seamlessly with large-scale manufacturing, achieving the highest certified PCE for inverted mini-modules at 22.74% (aperture area: 11.1 cm2). Our device also maintained 96.1% of its initial PCE after more than 2,400 hours of 1-sun operation in ambient air.

9.
Nature ; 615(7950): 50-55, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36859583

RESUMEN

The newly discovered nickelate superconductors so far only exist in epitaxial thin films synthesized by a topotactic reaction with metal hydrides1. This method changes the nickelates from the perovskite to an infinite-layer structure by deintercalation of apical oxygens1-3. Such a chemical reaction may introduce hydrogen (H), influencing the physical properties of the end materials4-9. Unfortunately, H is insensitive to most characterization techniques and is difficult to detect because of its light weight. Here, in optimally Sr doped Nd0.8Sr0.2NiO2H epitaxial films, secondary-ion mass spectroscopy shows abundant H existing in the form of Nd0.8Sr0.2NiO2Hx (x ≅ 0.2-0.5). Zero resistivity is found within a very narrow H-doping window of 0.22 ≤ x ≤ 0.28, showing unequivocally the critical role of H in superconductivity. Resonant inelastic X-ray scattering demonstrates the existence of itinerant interstitial s (IIS) orbitals originating from apical oxygen deintercalation. Density functional theory calculations show that electronegative H- occupies the apical oxygen sites annihilating IIS orbitals, reducing the IIS-Ni 3d orbital hybridization. This leads the electronic structure of H-doped Nd0.8Sr0.2NiO2Hx to be more two-dimensional-like, which might be relevant for the observed superconductivity. We highlight that H is an important ingredient for superconductivity in epitaxial infinite-layer nickelates.

10.
EMBO J ; 43(1): 14-31, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177313

RESUMEN

Sodium-calcium exchanger proteins influence calcium homeostasis in many cell types and participate in a wide range of physiological and pathological processes. Here, we elucidate the cryo-EM structure of the human Na+/Ca2+ exchanger NCX1.3 in the presence of a specific inhibitor, SEA0400. Conserved ion-coordinating residues are exposed on the cytoplasmic face of NCX1.3, indicating that the observed structure is stabilized in an inward-facing conformation. We show how regulatory calcium-binding domains (CBDs) assemble with the ion-translocation transmembrane domain (TMD). The exchanger-inhibitory peptide (XIP) is trapped within a groove between the TMD and CBD2 and predicted to clash with gating helices TMs1/6 at the outward-facing state, thus hindering conformational transition and promoting inactivation of the transporter. A bound SEA0400 molecule stiffens helix TM2ab and affects conformational rearrangements of TM2ab that are associated with the ion-exchange reaction, thus allosterically attenuating Ca2+-uptake activity of NCX1.3.


Asunto(s)
Calcio , Intercambiador de Sodio-Calcio , Humanos , Compuestos de Anilina/farmacología , Calcio/metabolismo , Éteres Fenílicos/farmacología , Intercambiador de Sodio-Calcio/química
11.
EMBO J ; 42(7): e111112, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36799040

RESUMEN

Brain metastasis, most commonly originating from lung cancer, increases cancer morbidity and mortality. Although metastatic colonization is the rate-limiting and most complex step of the metastatic cascade, the underlying mechanisms are poorly understood. Here, in vivo genome-wide CRISPR-Cas9 screening revealed that loss of interferon-induced transmembrane protein 1 (IFITM1) promotes brain colonization of human lung cancer cells. Incipient brain metastatic cancer cells with high expression of IFITM1 secrete microglia-activating complement component 3 and enhance the cytolytic activity of CD8+ T cells by increasing the expression and membrane localization of major histocompatibility complex class I. After activation, microglia (of the innate immune system) and cytotoxic CD8+ T lymphocytes (of the adaptive immune system) were found to jointly eliminate cancer cells by releasing interferon-gamma and inducing phagocytosis and T-cell-mediated killing. In human cancer clinical trials, immune checkpoint blockade therapy response was significantly correlated with IFITM1 expression, and IFITM1 enhanced the brain metastasis suppression efficacy of PD-1 blockade in mice. Our results exemplify a novel mechanism through which metastatic cancer cells overcome the innate and adaptive immune responses to colonize the brain, and suggest that a combination therapy increasing IFITM1 expression in metastatic cells with PD-1 blockade may be a promising strategy to reduce metastasis.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Linfocitos T CD8-positivos , Receptor de Muerte Celular Programada 1 , Neoplasias Pulmonares/patología , Encéfalo/patología
12.
Plant Cell ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819320

RESUMEN

The brassinosteroid (BR) receptor BRASSINOSTEROID-INSENSITIVE 1 (BRI1) plays a critical role in plant growth and development. Although much is known about how BR signaling regulates growth and development in many crop species, the role of StBRI1 in regulating potato (Solanum tuberosum) tuber development is not well understood. To address this question, a series of comprehensive genetic and biochemical methods were applied in this investigation. It was determined that StBRI1 and Solanum tuberosum PLASMA MEMBRANE (PM) PROTON ATPASE2 (PHA2), a PM-localized proton ATPase, play important roles in potato tuber development. The individual overexpression of StBRI1 and PHA2 led to a 22% and 25% increase in tuber yield per plant, respectively. Consistent with the genetic evidence, in vivo interaction analysis using double transgenic lines and PM H+-ATPase activity assays indicated that StBRI1 interacts with the C-terminus of PHA2, which restrains the intramolecular interaction of the PHA2 C-terminus with the PHA2 central loop to attenuate autoinhibition of PM H+-ATPase activity, resulting in increased PHA2 activity. Furthermore, the extent of PM H+-ATPase autoinhibition involving phosphorylation-dependent mechanisms corresponds to phosphorylation of the penultimate Thr residue (Thr-951) in PHA2. These results suggest that StBRI1 phosphorylates PHA2 and enhances its activity, which subsequently promotes tuber development. Altogether, our results uncover a BR-StBRI1-PHA2 module that regulates tuber development and suggest a prospective strategy for improving tuberous crop growth and increasing yield via the cell surface-based BR signaling pathway.

13.
Nature ; 595(7867): 361-369, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34262215

RESUMEN

With the rapid growth and development of proton-exchange membrane fuel cell (PEMFC) technology, there has been increasing demand for clean and sustainable global energy applications. Of the many device-level and infrastructure challenges that need to be overcome before wide commercialization can be realized, one of the most critical ones is increasing the PEMFC power density, and ambitious goals have been proposed globally. For example, the short- and long-term power density goals of Japan's New Energy and Industrial Technology Development Organization are 6 kilowatts per litre by 2030 and 9 kilowatts per litre by 2040, respectively. To this end, here we propose technical development directions for next-generation high-power-density PEMFCs. We present the latest ideas for improvements in the membrane electrode assembly and its components with regard to water and thermal management and materials. These concepts are expected to be implemented in next-generation PEMFCs to achieve high power density.

14.
Nature ; 599(7884): 325-329, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34552241

RESUMEN

Glutamate-gated kainate receptors are ubiquitous in the central nervous system of vertebrates, mediate synaptic transmission at the postsynapse and modulate transmitter release at the presynapse1-7. In the brain, the trafficking, gating kinetics and pharmacology of kainate receptors are tightly regulated by neuropilin and tolloid-like (NETO) proteins8-11. Here we report cryo-electron microscopy structures of homotetrameric GluK2 in complex with NETO2 at inhibited and desensitized states, illustrating variable stoichiometry of GluK2-NETO2 complexes, with one or two NETO2 subunits associating with GluK2. We find that NETO2 accesses only two broad faces of kainate receptors, intermolecularly crosslinking the lower lobe of ATDA/C, the upper lobe of LBDB/D and the lower lobe of LBDA/C, illustrating how NETO2 regulates receptor-gating kinetics. The transmembrane helix of NETO2 is positioned proximal to the selectivity filter and competes with the amphiphilic H1 helix after M4 for interaction with an intracellular cap domain formed by the M1-M2 linkers of the receptor, revealing how rectification is regulated by NETO2.


Asunto(s)
Proteínas de la Membrana/metabolismo , Receptores de Ácido Kaínico/metabolismo , Microscopía por Crioelectrón , Electrofisiología , Células HEK293 , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/ultraestructura , Modelos Moleculares , Unión Proteica , Receptores de Ácido Kaínico/química , Receptores de Ácido Kaínico/genética , Receptores de Ácido Kaínico/ultraestructura , Receptor de Ácido Kaínico GluK2
15.
Nucleic Acids Res ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850160

RESUMEN

A fundamental analysis task for single-cell transcriptomics data is clustering with subsequent visualization of cell clusters. The genes responsible for the clustering are only inferred in a subsequent step. Clustering cells and genes together would be the remit of biclustering algorithms, which are often bogged down by the size of single-cell data. Here we present 'Correspondence Analysis based Biclustering on Networks' (CAbiNet) for joint clustering and visualization of single-cell RNA-sequencing data. CAbiNet performs efficient co-clustering of cells and their respective marker genes and jointly visualizes the biclusters in a non-linear embedding for easy and interactive visual exploration of the data.

16.
Brief Bioinform ; 25(1)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-38113076

RESUMEN

In clinical treatment, two or more drugs (i.e. drug combination) are simultaneously or successively used for therapy with the purpose of primarily enhancing the therapeutic efficacy or reducing drug side effects. However, inappropriate drug combination may not only fail to improve efficacy, but even lead to adverse reactions. Therefore, according to the basic principle of improving the efficacy and/or reducing adverse reactions, we should study drug-drug interactions (DDIs) comprehensively and thoroughly so as to reasonably use drug combination. In this review, we first introduced the basic conception and classification of DDIs. Further, some important publicly available databases and web servers about experimentally verified or predicted DDIs were briefly described. As an effective auxiliary tool, computational models for predicting DDIs can not only save the cost of biological experiments, but also provide relevant guidance for combination therapy to some extent. Therefore, we summarized three types of prediction models (including traditional machine learning-based models, deep learning-based models and score function-based models) proposed during recent years and discussed the advantages as well as limitations of them. Besides, we pointed out the problems that need to be solved in the future research of DDIs prediction and provided corresponding suggestions.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Interacciones Farmacológicas , Bases de Datos Factuales , Simulación por Computador , Combinación de Medicamentos
17.
Plant Cell ; 34(6): 2343-2363, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35262740

RESUMEN

Mitochondrial function depends on the RNA processing of mitochondrial gene transcripts by nucleus-encoded proteins. This posttranscriptional processing involves the large group of nuclear-encoded pentatricopeptide repeat (PPR) proteins. Mitochondrial processes represent a crucial part in animal immunity, but whether mitochondria play similar roles in plants remains unclear. Here, we report the identification of RESISTANCE TO PHYTOPHTHORA PARASITICA 7 (AtRTP7), a P-type PPR protein, in Arabidopsis thaliana and its conserved function in immunity to diverse pathogens across distantly related plant species. RTP7 affects the levels of mitochondrial reactive oxygen species (mROS) by participating in RNA splicing of nad7, which encodes a critical subunit of the mitochondrial respiratory chain Complex I, the largest of the four major components of the mitochondrial oxidative phosphorylation system. The enhanced resistance of rtp7 plants to Phytophthora parasitica is dependent on an elevated mROS burst, but might be independent from the ROS burst associated with plasma membrane-localized NADPH oxidases. Our study reveals the immune function of RTP7 and the defective processing of Complex I subunits in rtp7 plants resulted in enhanced resistance to both biotrophic and necrotrophic pathogens without affecting overall plant development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Inmunidad de la Planta/genética , Procesamiento Postranscripcional del ARN , Empalme del ARN , ARN Mitocondrial/metabolismo , Estallido Respiratorio
18.
FASEB J ; 38(12): e23736, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38865202

RESUMEN

Subclinical hypothyroidism (SCH) in pregnancy is the most common form of thyroid dysfunction in pregnancy, which can affect fetal nervous system development and increase the risk of neurodevelopmental disorders after birth. However, the mechanism of the effect of maternal subclinical hypothyroidism on fetal brain development and behavioral phenotypes is still unclear and requires further study. In this study, we constructed a mouse model of maternal subclinical hypothyroidism by exposing dams to drinking water containing 50 ppm propylthiouracil (PTU) during pregnancy and found that its offspring were accompanied by severe cognitive deficits by behavioral testing. Mechanistically, gestational SCH resulted in the upregulation of protein expression and activity of HDAC1/2/3 in the hippocampus of the offspring. ChIP analysis revealed that H3K9ac on the neurogranin (Ng) promoter was reduced in the hippocampus of the offspring of SCH, with a significant reduction in Ng protein, leading to reduced expression levels of synaptic plasticity markers PSD95 (a membrane-associated protein in the postsynaptic density) and SYN (synaptophysin, a specific marker for presynaptic terminals), and impaired synaptic plasticity. In addition, administration of MS-275 (an HDAC1/2/3-specific inhibitor) to SCH offspring alleviated impaired synaptic plasticity and cognitive dysfunction in offspring. Thus, our study suggests that maternal subclinical hypothyroidism may mediate offspring cognitive dysfunction through the HDAC1/2/3-H3K9ac-Ng pathway. Our study contributes to the understanding of the signaling mechanisms underlying maternal subclinical hypothyroidism-mediated cognitive impairment in the offspring.


Asunto(s)
Disfunción Cognitiva , Histona Desacetilasa 1 , Histona Desacetilasa 2 , Hipotiroidismo , Neurogranina , Efectos Tardíos de la Exposición Prenatal , Animales , Neurogranina/metabolismo , Neurogranina/genética , Hipotiroidismo/metabolismo , Femenino , Embarazo , Ratones , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/etiología , Histona Desacetilasa 2/metabolismo , Histona Desacetilasa 2/genética , Efectos Tardíos de la Exposición Prenatal/metabolismo , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 1/genética , Regulación hacia Abajo , Hipocampo/metabolismo , Masculino , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Ratones Endogámicos C57BL , Plasticidad Neuronal
19.
FASEB J ; 38(1): e23375, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38102968

RESUMEN

BACKGROUND: Elevated IL-21 expression which can effectively induce Th17 cell differentiation has been implicated in the pathogenesis of psoriasis, but its role in angiogenesis remains poorly understood. METHODS: PASI and PSI score assessment was applied to evaluate the severity of psoriatic lesions. The expression of IL-21, IL-21 receptor (IL-21R), CD31, VEGFA, MMP-9, and ICAM-1 in skin was determined by immunohistochemistry or quantitative real-time polymerase chain reaction. The serum level of IL-21 was measured by enzyme-linked immunosorbent assay (ELISA). Then, their correlation was analyzed statistically. Human umbilical vein endothelial cells (HUVECs) cocultured with conditional medium from normal human epidermal keratinocytes (NHEKs) were treated with IL-21 and/or M5 cocktail (mixture of IL-1α, IL-17A, IL-22, TNF-α, and oncostatin M). The migration and tube formation of HUVECs were detected, and the levels of VEGFA, MMP-9, and ICAM-1 in NHEKs were measured by Western blotting or ELISA. RESULTS: Increased IL-21 and IL-21R expression was observed in psoriatic sera or skin specimens, with IL-21R mainly locating in keratinocytes and IL-21 in immune cells. Pearson analysis showed significantly positive correlation between IL-21/IL-21R and erythema scores/microvessel density in psoriatic lesions. Moreover, the expression of proangiogenic genes, VEGFA, ICAM-1, and MMP-9 was upregulated in skins of psoriasis. Additionally, in M5 microenvironment, migration and tube formation could be magnified in HUVECs using IL-21 pre-treated NHEK medium. Mechanically, the co-stimulation of IL-21 and M5 to NEHKs increased the expression of ICAM-1. CONCLUSION: IL-21 could regulate keratinocytes to secrete ICAM-1, thereby promoting angiogenesis in psoriasis.


Asunto(s)
Interleucinas , Psoriasis , Humanos , Angiogénesis , Células Endoteliales/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Queratinocitos/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Psoriasis/metabolismo , Piel/metabolismo , Interleucinas/metabolismo
20.
Crit Rev Immunol ; 44(5): 59-70, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38618729

RESUMEN

We investigated the potential arthritis-inducing effects of Phillygenin and its underlying mechanisms. RAW264.7 cells were stimulated with lipopolysaccharide to induce inflammation. Phillygenin was found to reduce arthritis score, histopathological changes, paw edema, spleen index, and ALP levels in a dose-dependent manner in a model of arthritis. Additionally, Phillygenin was able to decrease levels of inflammation markers in serum samples of mice with arthritis and also inhibited inflammation markers in the cell supernatant of an in vitro model of arthritis. Phillygenin increased cell viability and JC-1 disaggregation, enhanced calcien-AM/CoCl2, reduced LDH activity levels and IL-1a levels, and inhibited Calcein/PI levels and iron concentration in an in vitro model. Phillygenin was also found to reduce ROS-induced oxidative stress and Ferroptosis, and suppress the NLRP3 inflammasome in both in vivo and in vitro models through AMPK. In the in vivo model, Phillygenin was observed to interact with AMPK protein. These findings suggest that Phillygenin may be a potential therapeutic target for preventing arthritis by inhibiting NLRP3 inflammasome and Ferroptosis through AMPK. This indicates that Phillygenin could have disease-modifying effects on arthritis.


Asunto(s)
Artritis , Ferroptosis , Lignanos , Humanos , Animales , Ratones , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Proteínas Quinasas Activadas por AMP , Inflamación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA