Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Planta ; 259(5): 108, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38555562

RESUMEN

MAIN CONCLUSION: From a value chain perspective, this paper examines the important factors from the selection of planting areas to storage, which restrict the development of medicinal plants. The purpose of this paper is to provide theoretical basis for the sustainable development of medicinal plants. Medicinal plants have significant economic and medicinal value. Due to the gradual depletion of wild medicinal plant resources, cultivators of medicinal plants must resort to artificial cultivation to cope. However, there are still many problems in the production process of medicinal plants, resulting in decreases in both yield and quality, thus hindering sustainable development. To date, research on the value chain of medicinal plants is still limited. Therefore, this paper analyzes the factors affecting the development of medicinal plants from the perspective of the value chain, including the selection of growing areas to the storage process of medicinal plants, and summarizes the challenges faced in the production process of medicinal plants. The purpose of this paper is to provide theoretical basis for the sustainable development of medicinal plants.


Asunto(s)
Plantas Medicinales , Desarrollo Sostenible
2.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4078-4086, 2023 Aug.
Artículo en Zh | MEDLINE | ID: mdl-37802775

RESUMEN

Inner Mongolia autonomous region of China and Mongolia are the primary regions where Chinese and Mongolian medicine and its medicinal plant resources are distributed. In this study, 133 families, 586 genera, and 1 497 species of medicinal plants in Inner Mongolia as well as 62 families, 261 genera, and 467 species of medicinal plants in Mongolia were collected through field investigation, specimen collection and identification, and literature research. And the species, geographic distribution, and influencing factors of the above medicinal plants were analyzed. The results revealed that there were more plant species utilized for medicinal reasons in Inner Mongolia than in Mongolia. Hotspots emerged in Hulunbuir, Chifeng, and Tongliao of Inner Mongolia, while there were several hotspots in Eastern province, Sukhbaatar province, Gobi Altai province, Bayankhongor province, Middle Gobi province, Kobdo province, South Gobi province, and Central province of Mongolia. The interplay of elevation and climate made a non-significant overall contribution to the diversity of plant types in Inner Mongolia and Mongolia. The contribution of each factor increased significantly when the vegetation types of Inner Mongolia and Mongolia were broadly divided into forest, grassland and desert. Thus, the distribution of medicinal plant resources and vegetation cover were jointly influenced by a variety of natural factors such as topography, climate and interactions between species, and these factors contributed to and constrained each other. This study provided reference for sustainable development and rational exploitation of medicinal plant resources in future.


Asunto(s)
Plantas Medicinales , Humanos , Mongolia , Clima , Medicina Tradicional Mongoliana , China
4.
Int J Artif Organs ; 47(3): 217-222, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38362751

RESUMEN

The incidence of Mycobacterium tuberculosis (Mtb) infection in patients with mechanical circulatory support devices is extremely rare. We present a case involving a 38-year-old male who experienced a delayed sternal Mtb infection following left ventricular assist device (LVAD) implantation. More than 5 months post-surgery, the patient was readmitted to the hospital presenting a subxiphoid abscess. The incision site displayed an unsatisfactory healing process after the incision and drainage of the abscess. Despite engaging in a rigorous treatment protocol, which included anti-infective therapy, vacuum-assisted closure, and surgical debridement, the patient's wound remained unhealed. Ultimately, after pus gene sequencing confirmed the diagnosis, the patient was administered a regimen combining anti-tuberculosis and anti-infective therapy, which culminated in the successful healing of the wound. This singular case study not only reveals the clinical progression of an unexpected Mtb infection post-implantation but also emphasizes the challenges encountered in diagnosis and management.


Asunto(s)
Insuficiencia Cardíaca , Corazón Auxiliar , Tuberculosis , Masculino , Humanos , Adulto , Absceso , Esternón/cirugía , Cicatrización de Heridas , Resultado del Tratamiento , Insuficiencia Cardíaca/cirugía
5.
Sci Rep ; 14(1): 918, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195691

RESUMEN

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) is a series of artificial compounds which is associated with human health. However, there are few studies on the relationship between PFASs and hypertension. In this study, we examined the association between different kinds of PFASs and hypertension. Multivariable logistic regression and subgroup analysis were adopted to assess the associations between PFASs and hypertension. Spline smoothing plots and linear regression were used to assess the relationship between PFASs and blood pressure. We found a positive association between serum PFDeA concentrations and the prevalence of hypertension after fully adjusting confounders (OR = 1.2, P = 0.01), but other types of PFASs showed no positive results. Subgroup analysis stratified by ethnicity showed there was a stronger relationship among non-Hispanics than Hispanics. Serum PFDeA concentrations were positively associated with systolic pressure (ß = 0.7, P< 0.01) and diastolic blood pressure (ß = 0.8, P< 0.01) among non-Hispanics who did not take antihypertensive drugs. This study showed that PFDeA exposure was associated with hypertension in Americans who identify as non-Hispanic. There was a positive association between PFDeA and blood pressure in non-Hispanic Americans who did not take antihypertensive drugs.


Asunto(s)
Fluorocarburos , Hipertensión , Humanos , Antihipertensivos/efectos adversos , Encuestas Nutricionales , Hipertensión/epidemiología , Presión Sanguínea
6.
Fitoterapia ; 177: 106095, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38942299

RESUMEN

Peptidyl arginine deiminase 4 (PAD4) is a promising target for the treatment of metabolic diseases associated with autoimmune and central nervous system disease. By now there are limited numbers of PAD4 inhibitors, and no one is ready for clinical use. This study aims to find efficient and specific PAD4 inhibitors from traditional herbal medicines and to investigate their inhibitory mechanisms. The inhibitory effects of forty-eight extracts from sixteen traditional herbal medicines which are widely used in traditional herbal medicines were investigated. Salvia miltiorrhiza was found to have the most potent PAD4 inhibitory activity. After that, a practical bioactivity-guided fractionation coupling with a chemical profiling strategy was used to identify the fractions from Salvia miltiorrhiza with strong PAD4 inhibition activity, and the major constituents in these bioactive fractions were characterized by LC-MS/MS. Seven compounds were found to have inhibition on PAD4 with IC50 values ranging from 33.52 µM to 667 µM, in which salvianolic acid A showed the most potent inhibitory activity, with an IC50 value of 33.52 µM. Inhibition kinetic analyses indicated that salvianolic acid A effectively inhibited PAD4 in a mixed inhibitory manner, and computer simulation analyses demonstrated that salvianolic acid A binds to PAD4 mainly using hydrogen bonding. Overall, our results suggest that salvianolic acid A from Salvia miltiorrhiza is a potent inhibitor of PAD4, and that salvianolic acid A can be used as a promising lead compound for the development of more potent PAD4 inhibitors.

7.
Talanta ; 278: 126492, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38955099

RESUMEN

Dysregulation of peptidyl arginine deiminase 4 (PAD4) is involved in a variety of diseases including rheumatoid arthritis (RA) and Alzheimer's disease (AD), and it has emerged as potential and promising therapeutic target. However, no PAD4 inhibitor is ready for clinical use. Immobilized enzyme screening technology has gained increasing attention due to its low cost, reusability, easy separation from the reaction mixture, and resistance to changes in environmental conditions. In this study, PAD4 was immobilized on the magnetic nanoparticles (MNP) to prolong its activity stability, and a simple and rapid screening strategy of traditional Chinese medicine inhibitors based on immobilized PAD4 was established. The PAD4 enzyme was immobilized on magnetic nanoparticles (MNP) via Schiff base reaction using glutaraldehyde (GA) as crosslinking agent. Compared with free PAD4, the resulting MNP@GA@PAD4 exhibited an enhanced tolerance to temperature and storage stability, and its reusability was greatly improved with 66 % of initial enzyme activity after being recycled 10 times. The inhibitory activity of the immobilized PAD4 was assessed using two known PAD4 inhibitors GSK484 and BB-Cl-amidine. The semi-maximum inhibitory concentrations (IC50) of GSK484 and BB-Cl-amidine for MNP@GA@PAD4 were 1.00 and 0.97 µM, respectively, for free PAD4 were 0.64 and 0.85 µM, respectively. Finally, the MNP@GA@PAD4 was employed to rapid screen of natural PAD4 inhibitors from forty traditional Chinese medicines (TCMs). Under the same conditions, the controlled experiment was conducted with free PAD4. The screening results of TCMs inhibitors on MNP@GA@PAD4 and free PAD4 were similar, the alcohol extracts of Cinnamomi Cortex and Caryophylli Flos had significant inhibitory effects on PAD4 enzyme activity. The IC50 values of Cinnamomi Cortex extract for MNP@GA@PAD4 and free PAD4 were determined as 27 and 48 µg/mL, respectively. The IC50 values of Caryophylli Flos extracts for MNP@GA@PAD4 and free PAD4 were determined as 48 and 32 µg/mL, respectively. For the first time, this study proposed a method to immobilize PAD4 on magnetic materials, and developed a rapid, reusable and feasible strategy to screening natural PAD4 inhibitors from TCMs.

8.
Front Nutr ; 11: 1363574, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585613

RESUMEN

Objective: Extensive research has consistently shown the beneficial impact of fruit consumption on overall health. While some studies have proposed a potential association between fruit consumption and hypertension management, the influence of fruit consumption on mortality rates among hypertensive individuals remains uncertain. Consequently, aim of this study is to evaluate whether fruit consumption is associated with all-cause mortality among hypertensive patients. Methods: Data were obtained from the National Health and Nutrition Examination Survey (NHANES), conducted between 2003 and 2006. Ten-year follow-up data from the National Death Index (NDI) were used to assess all-cause mortality. Cox proportional hazard model was utilized to explore the impact of fruit intake on all-cause mortality among hypertensive individuals. Results: The study included a cohort of 2,480 patients diagnosed with hypertension, and during the follow-up period, a total of 658 deaths from various causes were recorded. The COX regression analysis demonstrated that hypertensive patients who consumed apples three to six times per week exhibited a significantly reduced risk of all-cause mortality (HR = 0.60, 95%CI: 0.45-0.78, p < 0.001) in comparison to those who consumed apples less than once per month. Likewise, consuming bananas three to six times per week also led to a comparable outcome (HR = 0.76, 95%CI: 0.59-0.97, p = 0.027). Moreover, Combined consumption of bananas and apples three to six times per week exhibited a noteworthy decrease in all-cause mortality (HR = 0.57, 95%CI: 0.39-0.84, p = 0.005) when compared to individuals who consumed these fruits less frequently. Conversely, no significant association was found between the consumption of other fruits, including pears, pineapples, and grapes, and all-cause mortality. Conclusion: The study discovered that moderate consumption of apples and bananas was associated with a reduced risk of all-cause mortality in patients with hypertension.

9.
Chemosphere ; 352: 141515, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38387659

RESUMEN

Anaerobically digested swine wastewater (ASW) purification by microalgae provides a promising strategy for nutrients recovery, biomass production and CO2 capture. However, the characteristics of ASW from different cleaning processes vary greatly. At present, the cultivation of microalgae in ASW from different manure cleaning processes is rarely investigated and compared. That may bring uncertainty for microalgae growth using different ASW in large-scale application. Thus, the ASW from three cleaning processes were tested for cultivating microalgae, including manure dry collection (I), water flushing (II) and water submerging processes (III). The characteristics of ASW from three manure cleaning processes varied greatly such as nutrient and heavy metals levels. High concentration of ammonia and copper in ASW significantly inhibited microalgae growth. Fortunately, the supply of high CO2 (10%) effectively alleviated negative influences, ensuring microalgal growth at low dilution ratio. The characteristics of three ASW resulted in significant differences in microalgae growth and biomass components. The maximal biomass production in optimal diluted ASW-I, II and III reached 1.46 g L-1, 2.19 g L-1 and 2.47 g L-1, respectively. The removal of organic compounds, ammonia and phosphorus by optimal microalgae growth in diluted ASW-I, II and III was 50.6%/94.2%/64.7%, 63.7%/82.3%/57.6% and 83.2%/91.7%/59.7%, respectively. The culture in diluted ASW-I, II and III obtained the highest lipids production of 12.1 mg L-1·d-1, 16.5 mg L-1·d-1 and 19.4 mg L-1·d-1, respectively. The analysis of lipids compositions revealed that the proportion of saturated fatty acids accounted for 36.4%, 32.4% and 27.9 % in optimal diluted ASW-I, II and III, as ideal raw materials for biodiesel production.


Asunto(s)
Chlorophyceae , Contaminantes Ambientales , Microalgas , Scenedesmus , Animales , Porcinos , Aguas Residuales , Biomasa , Estiércol , Amoníaco , Dióxido de Carbono , Nitrógeno , Ácidos Grasos , Biocombustibles , Agua
10.
Front Plant Sci ; 15: 1395046, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38938629

RESUMEN

Introduction: Global warming has led to increased environmental stresses on plants, notably drought. This affects plant distribution and species adaptability, with some medicinal plants showing enhanced drought tolerance and increased medicinal components. In this pioneering study, we delve into the intricate tapestry of Arnebia guttata, a medicinal plant renowned for its resilience in arid environments. By fusing a rich historical narrative with cutting-edge analytical methodologies, this research endeavors to demystify the plant's intricate response to drought stress, illuminating its profound implications for medicinal valorization. Methods: The methodology includes a comprehensive textual research and resource investigation of A. guttata, regionalization studies, field sample distribution analysis, transcriptome and metabolome profiling, rhizosphere soil microbiome analysis, and drought stress experiments. Advanced computational tools like ArcGIS, MaxEnt, and various bioinformatics software were utilized for data analysis and modeling. Results: The study identified significant genetic variations among A. guttata samples from different regions, correlating with environmental factors, particularly precipitation during the warmest quarter (BIO18). Metabolomic analysis revealed marked differences in metabolite profiles, including shikonin content, which is crucial for the plant's medicinal properties. Soil microbial community analysis showed variations that could impact plant metabolism and stress response. Drought stress experiments demonstrated A. guttata's resilience and its ability to modulate metabolic pathways to enhance drought tolerance. Discussion: The findings underscore the complex interplay between genetic makeup, environmental factors, and microbial communities in shaping A. guttata's adaptability and medicinal value. The study provides insights into how drought stress influences the synthesis of active compounds and suggests that moderate stress could enhance the plant's medicinal properties. Predictive modeling indicates future suitable growth areas for A. guttata, aiding in resource management and conservation efforts. The research contributes to the sustainable development of medicinal resources and offers strategies for improving the cultivation of A. guttata.

11.
J Chromatogr A ; 1716: 464643, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38232639

RESUMEN

Peptidyl arginine deiminase 4 (PAD4) is an important biocatalytic enzymes involved in the conversion of protein arginine to citrulline, its dysregulation has a great impact on many physiological processes. Recently, PAD4 has emerged as a potential therapeutic target for the treatment of various diseases including rheumatoid arthritis (RA). Traditional Chinese Medicines (TCMs), also known as herbal plants, have gained great attention by the scientific community due to their good therapeutic performance and far fewer side effects observed in the clinical treatment. However, limited researches have been reported to screen natural PAD4 inhibitors from herbal plants. The color developing reagent (COLDER) or fluorescence based methods have been widely used in PAD4 activity assay and inhibitor screening. However, both methods measure the overall absorbance or fluorescence in the reaction solution, which are easy to be affected by the background interference due to colorful extracts from herbal plants. In this study, a simple, and robust high-performance liquid chromatography ultraviolet-visible (HPLC-UV) based method was developed to determine PAD4 activity. The proposed strategy was established based on COLDER principle, while used hydrophilic l-arginine instead of hydrophobic N-benzoyl-l-arginine ethyl ester (BAEE) as a new substrate to determine PAD4 inhibition activity of herbal extracts. The herbal extracts and PAD4 generated hydrophobic l-citrulline were successfully separated by the HPLC, and the developed method was optimized and validated with a known PAD4 inhibitor (GSK484) in comparison with COLDER assay. The IC50 value of GSK484 measured by HPLC-UV method was 153 nM, and the detection limit of the citrulline was 0.5 nmol, respectively, with a linear range of 0.5 nmol to 20 nmol. The IC50 value of the HPLC-UV method was improved by nearly three times compared with COLDER assay (527 nM), and the results indicated the reliability of PAD4 inhibition via HPLC-UV method. The inhibitory effect against PAD4 were fast and accurately screened for the twenty-four extracts from eight herbs. Among them, Ephedra Herba extracts showed significant inhibitory activity against the PAD4 with the IC50 values of three extracts (ethanol, ethyl acetate and water) ranging from 29.11 µg/mL to 41.36 µg/mL, which may help researchers to discover novel natural compounds holding high PAD4 inhibition activity.


Asunto(s)
Productos Biológicos , Medicamentos Herbarios Chinos , Inhibidores Enzimáticos , Arginina Deiminasa Proteína-Tipo 4 , Cromatografía Líquida de Alta Presión , Citrulina , Arginina Deiminasa Proteína-Tipo 4/antagonistas & inhibidores , Reproducibilidad de los Resultados , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Inhibidores Enzimáticos/farmacología , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Productos Biológicos/farmacología , Medicamentos Herbarios Chinos/química
12.
Int J Biol Macromol ; 259(Pt 1): 129175, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38181916

RESUMEN

Armillaria mellea (Vahl) P. Kumm. is a well-known homoeopathic plant with medicinal and culinary uses. Modern phytochemical researchers have successfully extracted and purified over 40 types of A. mellea polysaccharides (AMPs) from the fruiting bodies, hyphae and fermentation broth of A. mellea, and some of them have been analyzed and identified by their chemical structures. The impressive biological activity of these polysaccharides has been recognized by scientists worldwide. Many studies show that AMPs have remarkable antioxidant, anti-diabetic, anti-tumor, anti-inflammatory, immunoregulatory, hypolipidemic, thrombectomy, anti-aging, pulmonary protective, hepatic protective, anti-Alzheimer's properties, etc. However, the current understanding of the relationships between their chemical structure and biological activity, toxicological effects and pharmacokinetics remains limited. This article provides a systematic review of the research conducted over the past decades on the extraction and purification methods, structural characteristics, biological activity and mechanism of action of AMPs. The aim is to provide a research base that will benefit the future application of AMPs as therapeutic drugs and functional foods, and also provide insights for the further development of AMPs.


Asunto(s)
Armillaria , Polisacáridos , Polisacáridos/farmacología , Armillaria/química , Antioxidantes/farmacología , Antioxidantes/química , Antiinflamatorios/farmacología
13.
Front Microbiol ; 13: 845269, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35755996

RESUMEN

The human coronavirus OC43 (HCoV-OC43) is one of the most common causes of common cold but can lead to fatal pneumonia in children and elderly. However, the available animal models of HCoV-OC43 did not show respiratory symptoms that are insufficient to assist in screening antiviral agents for respiratory diseases. In this study, we adapted the HCoV-OC43 VR-1558 strain by serial passage in suckling C57BL/6 mice and the resulting mouse-adapted virus at passage 9 (P9) contained 8 coding mutations in polyprotein 1ab, spike (S) protein, and nucleocapsid (N) protein. Pups infected with the P9 virus significantly lost body weight and died within 5 dpi. In cerebral and pulmonary tissues, the P9 virus replication induced the production of G-CSF, IFN-γ, IL-6, CXCL1, MCP-1, MIP-1α, RANTES, IP-10, MIP-1ß, and TNF-α, as well as pathological alterations including reduction of neuronal cells and typical symptoms of viral pneumonia. We found that the treatment of arbidol hydrochloride (ARB) or Qingwenjiere Mixture (QJM) efficiently improved the symptoms and decreased n gene expression, inflammatory response, and pathological changes. Furthermore, treating with QJM or ARB raised the P9-infected mice's survival rate within a 15 day observation period. These findings suggested that the new mouse-adapted HCoV-OC43 model is applicable and reproducible for antiviral studies of HCoV-OC43.

14.
Polymers (Basel) ; 13(9)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925598

RESUMEN

Nowadays, the addition of nanoparticles to polymer solutions would be of interest; however, the feasible property of nanoparticles and their impact on oil recovery has not been investigated in more detail. This study investigates the rheology and capillary forces (interfacial tension and contact angle) of nanoparticles in the polymer performances during oil recovery processes. Thereby, a sequential injection of water, polymer, and nanoparticles; Nanosilica (SiO2) and nano-aluminium oxide (Al2O3) was performed to measure the oil recovery factor. Retention decrease, capillary forces reduction, and polymer viscoelastic behavior increase have caused improved oil recovery due to the feasible mobility ratio of polymer-nanoparticle in fluid loss. The oil recovery factor for polymer flooding, polymer-Al2O3, and polymer-SiO2 is 58%, 63%, and 67%, respectively. Thereby, polymer-SiO2 flooding would provide better oil recovery than other scenarios that reduce the capillary force due to the structural disjoining pressure. According to the relative permeability curves, residual oil saturation (Sor) and water relative permeability (Krw) are 29% and 0.3%, respectively, for polymer solution; however, for the polymer-nanoparticle solution, Sor and Krw are 12% and 0.005%, respectively. Polymer treatment caused a dramatic decrease, rather than the water treatment effect on the contact angle. The minimum contact angle for water and polymer treatment are about 21 and 29, respectively. The contact angle decrease for polymer treatment in the presence of nanoparticles related to the surface hydrophilicity increase. Therefore, after 2000 mg L-1 of SiO2 concentration, there are no significant changes in contact angle.

15.
Front Pharmacol ; 12: 781090, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35185537

RESUMEN

Traditional Chinese medicines (TCMs) have been regularly prescribed to treat and prevent diseases for thousands of years in the eastern part of the Asian continent. Thus, when the coronavirus disease 2019 (COVID-19) epidemic started, TCM was officially incorporated as a strategy by the National Health Commission (NHC) for the treatment of COVID-19 infection. TCMs were used to treat COVID-19 and had a significant effect on alleviating symptoms, delaying disease progression, improving the cure rate, and reducing the mortality rate in China. Therefore, China's National Health Commission officially approved Qingfei Paidu decoction, Xuanfei Baidu decoction, Huashi Baidu decoction, Lianhua Qingwen capsules, Jinhua Qinggan granules, and Xuebijing for COVID-19 treatment. This review evaluates and summarizes the use of TCMs against infectious diseases and the composition, clinical efficacy, and mechanisms of the NHC-approved "three Chinese medicines and three Chinese recipes" for COVID-19 treatment. The three Chinese medicines and three Chinese recipes have been demonstrated to be highly effective against COVID-19, but there is a lack of in vivo or in vitro evidence. Most of the available data related to the potential mechanism of the three Chinese medicines and three Chinese recipes is based on virtual simulation or prediction, which is acquired via molecular docking and network pharmacology analysis. These predictions have not yet been proven. Therefore, there is a need for high-quality in vivo and in vitro and clinical studies by employing new strategies and technologies such as genomics, metabolomics, and proteomics to verify the predicted mechanisms of these drug's effects on COVID-19.

16.
Materials (Basel) ; 14(22)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34832413

RESUMEN

The selective transport of ions in nanopores attracts broad interest due to their potential applications in chemical separation, ion filtration, seawater desalination, and energy conversion. The ion selectivity based on the ion dehydration and steric hindrance is still limited by the very similar diameter between different hydrated ions. The selectivity can only separate specific ion species, lacking a general separation effect. Herein, we report the highly ionic selective transport in charged nanopore through the combination of hydraulic pressure and electric field. Based on the coupled Poisson-Nernst-Planck (PNP) and Navier-Stokes (NS) equations, the calculation results suggest that the coupling of hydraulic pressure and electric field can significantly enhance the ion selectivity compared to the results under the single driven force of hydraulic pressure or electric field. Different from the material-property-based ion selective transport, this method endows the general separation effect between different kinds of ions. Through the appropriate combination of hydraulic pressure and electric field, an extremely high selectivity ratio can be achieved. Further in-depth analysis reveals the influence of nanopore diameter, surface charge density and ionic strength on the selectivity ratio. These findings provide a potential route for high-performance ionic selective transport and separation in nanofluidic systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA