Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 32(8): 14801-14807, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38859416

RESUMEN

Nanodomain engineering in lithium niobate on insulator (LNOI) is critical to realize advanced photonic circuits. Here, we investigate the tip-induced nanodomain formation in x-cut LNOI. The effective electric field exhibits a mirror symmetry, which can be divided into preceding and sequential halves according to the tip movement. Under our configuration, the preceding electric field plays a decisive role rather than the sequential one as in previous reports. The mechanism is attributed to the screening field formed by the preceding field counteracting the effect of the subsequent one. In experiment, we successfully fabricate nanodomain dots, lines, and periodic arrays. Our work offers a useful approach for nanoscale domain engineering in x-cut LNOI, which has potential applications in integrated optoelectronic devices.

2.
Opt Express ; 31(23): 37464-37471, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-38017874

RESUMEN

Lithium niobate on insulator (LNOI) is a powerful platform for integrated photonic circuits. Recently, advanced applications in nonlinear and quantum optics require to controllably fabricate nano-resolution domain structures in LNOI. Here, we report on the fabrication of stable domain structures with sub-100 nm feature size through piezoelectric force microscopy (PFM) tip poling in a z-cut LNOI. In experiment, the domain dot with an initial diameter of 80 nm and the domain line with an initial width of 50 nm can survive after a storage of more than 3 months. Particularly, we demonstrate the successful fabrication of 1D stable domain array with a period down to 100 nm and a duty cycle of ∼50%. Our method paves the way to precisely manipulate frequency conversion and quantum entanglement on an LNOI chip.

3.
Adv Mater ; 34(3): e2105778, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34676925

RESUMEN

Interfacial thermal transport plays a prominent role in the thermal management of nanoscale objects and is of fundamental importance for basic research and nanodevices. At metal/insulator interfaces, a configuration commonly found in electronic devices, heat transport strongly depends upon the effective energy transfer from thermalized electrons in the metal to the phonons in the insulator. However, the mechanism of interfacial electron-phonon coupling and thermal transport at metal/insulator interfaces is not well understood. Here, the observation of a substantial enhancement of the interfacial thermal resistance and the important role of surface charges at the metal/ferroelectric interface in an Al/BiFeO3 membrane are reported. By applying uniaxial strain, the interfacial thermal resistance can be varied substantially (up to an order of magnitude), which is attributed to the renormalized interfacial electron-phonon coupling caused by the charge redistribution at the interface due to the polarization rotation. These results imply that surface charges at a metal/insulator interface can substantially enhance the interfacial electron-phonon-mediated thermal coupling, providing a new route to optimize the thermal transport performance in next-generation nanodevices, power electronics, and thermal logic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA