Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(17): 8457-8462, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30948641

RESUMEN

Prostaglandin E2 (PGE2) plays an important role in vascular homeostasis. Its receptor, E-prostanoid receptor 4 (EP4) is essential for physiological remodeling of the ductus arteriosus (DA). However, the role of EP4 in pathological vascular remodeling remains largely unknown. We found that chronic angiotensin II (AngII) infusion of mice with vascular smooth muscle cell (VSMC)-specific EP4 gene knockout (VSMC-EP4-/-) frequently developed aortic dissection (AD) with severe elastic fiber degradation and VSMC dedifferentiation. AngII-infused VSMC-EP4-/- mice also displayed more profound vascular inflammation with increased monocyte chemoattractant protein-1 (MCP-1) expression, macrophage infiltration, matrix metalloproteinase-2 and -9 (MMP2/9) levels, NADPH oxidase 1 (NOX1) activity, and reactive oxygen species production. In addition, VSMC-EP4-/- mice exhibited higher blood pressure under basal and AngII-infused conditions. Ex vivo and in vitro studies further revealed that VSMC-specific EP4 gene deficiency significantly increased AngII-elicited vasoconstriction of the mesenteric artery, likely by stimulating intracellular calcium release in VSMCs. Furthermore, EP4 gene ablation and EP4 blockade in cultured VSMCs were associated with a significant increase in MCP-1 and NOX1 expression and a marked reduction in α-SM actin (α-SMA), SM22α, and SM differentiation marker genes myosin heavy chain (SMMHC) levels and serum response factor (SRF) transcriptional activity. To summarize, the present study demonstrates that VSMC EP4 is critical for vascular homeostasis, and its dysfunction exacerbates AngII-induced pathological vascular remodeling. EP4 may therefore represent a potential therapeutic target for the treatment of AD.


Asunto(s)
Angiotensina II/metabolismo , Disección Aórtica/metabolismo , Presión Sanguínea/fisiología , Inflamación/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E , Animales , Aorta/química , Aorta/metabolismo , Aneurisma de la Aorta/metabolismo , Dinoprostona/metabolismo , Femenino , Hipertensión/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/genética , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Remodelación Vascular/genética
2.
Proc Natl Acad Sci U S A ; 112(27): 8397-402, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26100911

RESUMEN

The antidiuretic hormone arginine vasopressin is a systemic effector in urinary concentration. However, increasing evidence suggests that other locally produced factors may also play an important role in the regulation of water reabsorption in renal collecting ducts. Recently, prostaglandin E2 (PGE2) receptor EP4 has emerged as a potential therapeutic target for the treatment of nephrogenic diabetes insipidus, but the underlying mechanism is unknown. To evaluate the role of EP4 in regulating water homeostasis, mice with renal tubule-specific knockout of EP4 (Ksp-EP4(-/-)) and collecting duct-specific knockout of EP4 (AQP2-EP4(-/-)) were generated using the Cre-loxP recombination system. Urine concentrating defect was observed in both Ksp-EP4(-/-) and AQP2-EP4(-/-) mice. Decreased aquaporin 2 (AQP2) abundance and apical membrane targeting in renal collecting ducts were evident in Ksp-EP4(-/-) mice. In vitro studies demonstrated that AQP2 mRNA and protein levels were significantly up-regulated in mouse primary inner medullary collecting duct (IMCD) cells after pharmacological activation or adenovirus-mediated overexpression of EP4 in a cAMP/cAMP-response element binding protein-dependent manner. In addition, EP4 activation or overexpression also increased AQP2 membrane accumulation in a mouse IMCD cell line (IMCD3) stably transfected with the AQP2 gene, mainly through the cAMP/protein kinase A and extracellular signal-regulated kinase pathways. In summary, the EP4 receptor in renal collecting ducts plays an important role in regulating urinary concentration under physiological conditions. The ability of EP4 to promote AQP2 membrane targeting and increase AQP2 abundance makes it a potential therapeutic target for the treatment of clinical disorders including acquired and congenital diabetes insipidus.


Asunto(s)
Acuaporina 2/genética , Capacidad de Concentración Renal/genética , Túbulos Renales Colectores/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/genética , Animales , Acuaporina 2/metabolismo , Western Blotting , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Dinoprostona/análogos & derivados , Dinoprostona/biosíntesis , Dinoprostona/farmacología , Túbulos Renales Colectores/citología , Sistema de Señalización de MAP Quinasas , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Fluorescente , Cultivo Primario de Células , Pirrolidinonas/farmacología , Interferencia de ARN , Subtipo EP4 de Receptores de Prostaglandina E/agonistas , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Agua/metabolismo
3.
Proc Natl Acad Sci U S A ; 111(6): 2277-82, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-24464484

RESUMEN

The farnesoid X receptor (FXR) is a ligand-activated transcription factor belonging to the nuclear receptor superfamily. FXR is mainly expressed in liver and small intestine, where it plays an important role in bile acid, lipid, and glucose metabolism. The kidney also has a high FXR expression level, with its physiological function unknown. Here we demonstrate that FXR is ubiquitously distributed in renal tubules. FXR agonist treatment significantly lowered urine volume and increased urine osmolality, whereas FXR knockout mice exhibited an impaired urine concentrating ability, which led to a polyuria phenotype. We further found that treatment of C57BL/6 mice with chenodeoxycholic acid, an FXR endogenous ligand, significantly up-regulated renal aquaporin 2 (AQP2) expression, whereas FXR gene deficiency markedly reduced AQP2 expression levels in the kidney. In vitro studies showed that the AQP2 gene promoter contained a putative FXR response element site, which can be bound and activated by FXR, resulting in a significant increase of AQP2 transcription in cultured primary inner medullary collecting duct cells. In conclusion, the present study demonstrates that FXR plays a critical role in the regulation of urine volume, and its activation increases urinary concentrating capacity mainly via up-regulating its target gene AQP2 expression in the collecting ducts.


Asunto(s)
Capacidad de Concentración Renal/genética , Receptores Citoplasmáticos y Nucleares/genética , Animales , Acuaporina 2/genética , Acuaporina 2/metabolismo , Secuencia de Bases , Cartilla de ADN , Riñón/metabolismo , Masculino , Ratones , Ratones Noqueados , Reacción en Cadena de la Polimerasa , Receptores Citoplasmáticos y Nucleares/metabolismo
4.
Arterioscler Thromb Vasc Biol ; 31(8): 1739-47, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21636806

RESUMEN

OBJECTIVE: Restenosis after angioplasty remains a major clinical problem. Prostaglandin E(2) (PGE(2)) plays an important role in vascular homeostasis. The PGE(2) receptor E-prostanoid 2 (EP2) is involved in the proliferation and migration of various cell types. We aimed to determine the role of EP2 in the pathogenesis of neointimal formation after vascular injury. METHODS AND RESULTS: Wire-mediated vascular injury was induced in the femoral arteries of male wild-type (EP2+/+) and EP2 gene-deficient (EP2-/-) mice. In EP2+/+ mice, EP2 mRNA expression was increased in injured vessels for at least 4 weeks after vascular injury. Neointimal hyperplasia was markedly accelerated in EP2-/- mice, which was associated with increased proliferation and migration of vascular smooth muscle cells (VSMCs) and increased cyclin D1 expression in the neointima layer. Platelet-derived growth factor-BB (PDGF-BB) treatment resulted in more significant cell proliferation and migration in VSMCs of EP2-/- mice than in those of EP2+/+ mice. Activation and overexpression of EP2 attenuated PDGF-BB-elicited cell proliferation and migration, induced G(1)→S-phase arrest and reduced PDGF-BB-stimulated extracellular signal-regulated kinase phosphorylation in EP2+/+ VSMCs. CONCLUSIONS: These findings reveal a novel role of the EP2 receptor in neointimal hyperplasia after arterial injury. The EP2 receptor may represent a potential therapeutic target for restenosis after angioplasty.


Asunto(s)
Neointima/etiología , Subtipo EP2 de Receptores de Prostaglandina E/fisiología , Animales , Becaplermina , Ciclo Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Reestenosis Coronaria/etiología , Reestenosis Coronaria/patología , Reestenosis Coronaria/fisiopatología , Modelos Animales de Enfermedad , Arteria Femoral/lesiones , Arteria Femoral/metabolismo , Arteria Femoral/patología , Expresión Génica , Humanos , Hiperplasia , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/fisiología , Neointima/genética , Neointima/metabolismo , Neointima/patología , Factor de Crecimiento Derivado de Plaquetas/farmacología , Proteínas Proto-Oncogénicas c-sis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Subtipo EP2 de Receptores de Prostaglandina E/antagonistas & inhibidores , Subtipo EP2 de Receptores de Prostaglandina E/deficiencia , Subtipo EP2 de Receptores de Prostaglandina E/genética
6.
Sci China Life Sci ; 59(3): 299-311, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26783141

RESUMEN

Leukocyte transendothelial migration and sequestration are two distinct outcomes following leukocyte adhesion to endothelium during ischemia-reperfusion injury, in which platelets may play a pivotal role. In the present study, we established an in vitro hypoxia-reoxygenation model to mimic ischemia-reperfusion injury and found platelet pre-incubation significantly increased leukocyte adhesion to endothelial cells after hyoxia-reoxygenation (over 67%). Blockade of endothelial-cell-expressed adhesion molecules inhibited leukocyte direct adhesion to endothelial cells, while platelet-mediated leukocyte adhesion was suppressed by blockade of platelet-expressed adhesion molecules. Further experiments revealed platelets acted as a bridge to mediate leukocyte adhesion, and platelet-mediated adhesion was the predominant pattern in the presence of platelets. However, platelet pre-incubation significantly suppressed leukocyte transendothelial migration after hypoxia-reoxygenation (over 31%), which could be aggravated by blockade of endothelial-cell-expressed adhesion molecules, but alleviated by blockade of platelet- expressed adhesion molecules. This would indicate that platelet-mediated adhesion disrupted leukocyte transendothelial migration. An in vivo mesenteric ischemia-reperfusion model demonstrated leukocyte transfusion alone caused mild leukocyte adhesion to reperfused vessels and subsequent leukocyte infiltration, while simultaneous leukocyte and platelet transfusion led to massive leukocyte adhesion and sequestration within reperfused microvessels. Our studies revealed platelets enhanced leukocyte adhesion to endothelial cells, but suppressed leukocyte transendothelial migration. Overall, this leads to leukocyte sequestration in hypoxia-reoxygenated microvessels.


Asunto(s)
Plaquetas/metabolismo , Leucocitos/metabolismo , Microvasos/fisiopatología , Daño por Reperfusión/fisiopatología , Plaquetas/citología , Adhesión Celular/fisiología , Moléculas de Adhesión Celular/metabolismo , Hipoxia de la Célula , Línea Celular , Movimiento Celular , Células Cultivadas , Células Endoteliales/citología , Humanos , Leucocitos/citología , Microvasos/citología , Modelos Biológicos
7.
J Diabetes ; 6(2): 132-46, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24405721

RESUMEN

OBJECTIVE: Metformin is a first-line antidiabetic drug for type 2 diabetes (T2D) with a relatively good safety profile. Metformin activates AMP-activated protein kinase (AMPK), which is crucial in maintaining renal medullary function, with inappropriate AMPK activation facilitating renal medullary interstitial cells (RMICs) apoptosis under hypertonic challenge. The present study was to determine the effects of metformin on RMIC survival in both normal and T2D mice. METHODS: Mice (C57BL/6, db/m, and db/db) were treated with 450 mg/kg metformin for 7 days and subjected to 24-h water restriction (=dehydration) before being killed. Cell apoptosis in the renal medulla was determined by the terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labeling (TUNEL) assay. Cultured RMIC were treated with 10 mmol/L metformin in the presence or absence of hypertonic stress. Cell viability was determined and the underlying mechanisms were investigated. RESULTS: Metformin induced significant apoptosis of RMIC in dehydrated normal mice and both hydrated and dehydrated T2D mice. Hypertonicity increased ATP production and inhibited AMPK phosphorylation in RMIC, which was attenuated by metformin. Metformin augmented hypertonicity-induced apoptosis of RMIC, suppressed the nuclear factor-κB/cyclo-oxygenase-2 pathway, reduced reactive oxygen species production and inhibited transcriptional activation of tonicity-responsive enhancer binding protein (TonEBP) and its downstream osmoprotective gene expression. CONCLUSIONS: Metformin treatment is associated with increased RMIC apoptosis in both normally hydrated and dehydrated T2D mice. The results confirm AMPK as a critical factor involved in the maintenance of RMIC viability in T2D and raise safety concerns for metformin and other AMPK-activating antidiabetic drugs in dehydrated diabetic patients.


Asunto(s)
Apoptosis/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Médula Renal/efectos de los fármacos , Metformina/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Western Blotting , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ciclooxigenasa 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Expresión Génica/efectos de los fármacos , Soluciones Hipertónicas/farmacología , Hipoglucemiantes/farmacología , Médula Renal/metabolismo , Médula Renal/patología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , FN-kappa B/metabolismo , Fosforilación/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/genética , Privación de Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA