RESUMEN
The accurate determination of waster sludge water content is crucial to sludge dewatering treatment and its disposal management. Though previous studies highlight the great advantages of low-field nuclear magnetic resonance (LF-NMR) in the determination of sludge water content, its accuracy and applicability are not well studied. Herein, this study investigated the settling of operating parameters and the properties of sludge samples on the accuracy and applicability of LF-NMR method in measuring sludge water content. The results showed that the setting of basic parameters such as standard curve, number of scanning times (NS) and sample weight affected the accuracy of sludge water content by LF-NMR. The standard calibration curve constructed by 3 g/L CuSO4, NS = 8 and the sample weight of about 5 g, were suitable for the accurate determination of sludge water content. Furthermore, the existence of magnetic substances in sludge can affect the distribution gradient of main magnetic field, and thus restricted the applicability of LF-NMR. The saturation magnetization of chemical reagents strongly correlated with the measured relative errors of sludge water content (r = 0.995, p < 0.01), the greater the saturation magnetization of the magnetic material, the greater the error of the test results. On the whole, it is necessary to fully consider the influence of process parameters and sludge properties to evaluate the accuracy and applicability of the LF-NMR method, rather than simply copying the parameters in literatures.
Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Agua/química , Espectroscopía de Resonancia MagnéticaRESUMEN
Exploring moisture distribution, especially bound water content, is vital for studying and applying sludge dewatering. The differential scanning calorimetry (DSC) method has been extensively utilized for the quantitative characterization of moisture distribution in sludge. However, this method has certain limitations, such as low reproducibility of results, leading to controversial parameter values in different papers and hindering result comparison. In this study, we investigated the influence of key sample attributes on measuring sludge bound water using the DSC method.The findings demonstrated that the moisture content and mass of sludge samples substantially influenced the reproducibility and stability of DSC test results. To ensure data reliability, the moisture content of the sludge sample should be minimized and kept below 84%, with the mass not exceeding 10 mg. Compared to the influence of sludge moisture content and sample mass, the heating rate (1â5 °C/min) minimally affected DSC test results. This study offers a comprehensive insight into how sample attributes and test parameters affect the quantitative characterization of bound water in sludge using the DSC method. Furthermore, practical strategies are presented to enhance the method's applicability in sludge bound water characterization.