Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202407016, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953597

RESUMEN

Lanthanide (Ln) based mononuclear single-molecule magnets (SMMs) provide probably the finest ligand regulation model for magnetic property. Recently, the development of such SMMs has witnessed a fast transition from coordination to organometallic complexes because the latter provides a fertile, yet not fully excavated soil for the development of SMMs. Especially those SMMs with heterocyclic ligands have shown the potential to reach higher blocking temperature. In this minireview, we give an overview of the design principle of SMMs and highlight those "shining stars" of heterocyclic organolanthanide SMMs based on the ring sizes of ligands, analysing how the electronic structures of those ligands and the stiffness of subsequently formed molecules affect the dynamic magnetism of SMMs. Finally, we envisaged the future development of heterocyclic Ln-SMMs.

2.
J Am Chem Soc ; 145(31): 17292-17298, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37493570

RESUMEN

Polyradicals, i.e., multispin organic molecules, are playing important roles in radical-based material applications for their spin-spin interaction. A dynamic covalently bonded multispin molecule may endow materials with added function such as memory and switching. However, such a species has yet to be reported. We here report the synthesis, characterization, and crystal structure of a dynamic triradical species. It is generated by the self-assembly of two molecules through a Lewis acid coupled electron transfer. The crystalline species is spin-frustrated without Jahn-Teller distortion at low temperature, while it dissociates back to diamagnetic starting material in solution at high temperature. The reversible process is tracked by variable-temperature NMR, EPR, and UV-vis-NIR spectroscopy. Isolation, property study, and dynamic bonding investigation on such a species lay the foundation for the design of functional polyradicals with potential application as memory or switching devices.

3.
J Am Chem Soc ; 145(51): 27993-28009, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-37997752

RESUMEN

The thermostable four-coordinate divalent lanthanide (Ln) bis-amidinate complexes [Ln(Piso)2] (Ln = Tb, Dy; Piso = {(NDipp)2CtBu}, Dipp = C6H3iPr2-2,6) were prepared by the reduction of parent five-coordinate Ln(III) precursors [Ln(Piso)2I] (Ln = Tb, Dy) with KC8; halide abstraction of [Ln(Piso)2I] with [H(SiEt3)2][B(C6F5)] gave the respective Ln(III) complexes [Ln(Piso)2][B(C6F5)]. All complexes were characterized by X-ray diffraction, ICP-MS, elemental analysis, SQUID magnetometry, UV-vis-NIR, ATR-IR, NMR, and EPR spectroscopy and ab initio CASSCF-SO calculations. These data consistently show that [Ln(Piso)2] formally exhibit Ln(II) centers with 4fn5dz21 (Ln = Tb, n = 8; Dy, n = 9) valence electron configurations. We show that simple assignments of the f-d coupling to either L-S or J-s schemes are an oversimplification, especially in the presence of significant crystal field splitting. The coordination geometry of [Ln(Piso)2] is intermediate between square planar and tetrahedral. Projecting from the quaternary carbon atoms of the CN2 ligand backbones shows near-linear C···Ln···C arrangements. This results in strong axial ligand fields to give effective energy barriers to magnetic reversal of 1920(91) K for the Tb(II) analogue and 1964(48) K for Dy(II), the highest values observed for mononuclear Ln(II) single-molecule magnets, eclipsing 1738 K for [Tb(C5iPr5)2]. We tentatively attribute the fast zero-field magnetic relaxation for these complexes at low temperatures to transverse fields, resulting in considerable mixing of mJ states.

4.
Chemistry ; 29(29): e202300256, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-36863997

RESUMEN

Two dichloride-bridged dinuclear dysprosium(III) complexes based on salen ligands, namely, [Dy(L1 )(µ-Cl)(thf)]2 (1; H2 L1 =N,N'-bis(3,5-di-tert-butylsalicylidene)phenylenediamine) and [Dy2 (L2 )2 (µ-Cl)2 (thf)2 ]2 (2; H2 L2 =N,N'-bis(3,5-di-tert-butylsalicylidene)ethylenediamine) are reported. These two complexes have two short Dy-O(PhO) bonds that exhibit angles of ∼90° for 1 and ∼143° for 2, leading to clear slow relaxation of the magnetization for 2 and not for 1. Compound 2 has a near-identical core to the recently reported compound [Dy2 (L3 )2 (µ-Cl)2 (thf)2 ] (3; H2 L3 =N-(2-pyridylmethyl)-N,N-bis(2'-hydroxy-3',5'-di-tert-butylbenzyl)amine). The only substantial difference is the relative angle of the two O(PhO) -Dy-O(PhO) vectors, which is collinear in 2 owing to inversion symmetry and ∼68° in 3 due to a molecular C2 axis. It is shown that this subtle structural difference leads to large differences in the dipolar ground states, giving rise to open magnetic hysteresis for 3 and not for 2.

5.
Inorg Chem ; 62(21): 8435-8441, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37171409

RESUMEN

Gadolinium is a special case in spectroscopy because of the near isotropic nature of the 4f7 configuration of the +3 oxidation state. Gd3+ complexes have been studied in several symmetries to understand the underlying mechanisms of the ground state splitting. The abundance of information in Gd3+ spectra can be used as a probe for properties of the other rare earth ions in the same complexes. In this work, the zero-field splitting (ZFS) of a series of Gd3+ pentagonal bipyramidal complexes of the form [GdX1X2(Leq)5]n+ [n = 1, X = axial ligands: Cl-, -OtBu, -OArF5 or n = 3, X = tBuPO(NHiPr)2, Leq = equatorial ligand: Py, THF or H2O] with near fivefold symmetry axes along X1-Gd-X2 was investigated. The ZFS parameters were determined by fitting of room-temperature continuous wave electron paramagnetic resonance (EPR) spectra (at X-, K-, and Q-band) to a spin Hamiltonian incorporating extended Stevens operators compatible with C5 symmetry. Examination of the acquired parameters led to the conclusion that the ZFS is dominated by the B20 term and that the magnitude of B20 is almost entirely dependent on, and inversely proportional to, the donor strength of the axial ligands. Surveying the continuous shape measure and the X1-Gd-X2 angle of the complexes showed that there is some correlation between the proximity of each complex to D5h symmetry and the magnitude of the B65 parameter, but that the deformation of the X1-Gd-X2 angle is more significant than other distortions. Finally, the magnitude of B20 was found to be inversely proportional to the thermal barrier for the reversal of the magnetic moment (Ueff) of the corresponding isostructural Dy3+ complexes.

6.
Inorg Chem ; 62(16): 6297-6305, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37040590

RESUMEN

A novel CrII-dimeric complex, [CrIIN(SiiPr3)2(µ-Cl)(THF)]2 (1), has been successfully constructed using a bulky silyl-amide ligand. Single-crystal structure analysis reveals that complex 1 exhibits a binuclear motif, with a Cr2Cl2 rhombus core, where two equivalent tetra-coordinate CrII centers in the centrosymmetric unit display quasi-square planar geometry. The crystal structure has been well simulated and explored by density functional theory calculations. The axial zero-field splitting parameter (D < 0) with a small rhombic (E) value is unambiguously determined by systematic investigations of magnetic measurements, high-frequency electron paramagnetic resonance spectroscopy, and ab initio calculations. Remarkably, ac magnetic susceptibility data unveil that 1 features slow dynamic magnetic relaxation typical of single-molecule magnet behavior with Ueff = 22 K in the absence of a dc field. This increases up to 35 K under a corresponding static field. Moreover, magnetic studies and theoretical calculations point out that a non-negligible ferromagnetic coupling (FMC) exists in the dimeric Cr-Cr units of 1. The coexistence of magnetic anisotropy and FMC contributes to the first case of CrII-based single-molecule magnets (SMMs) under zero dc field.

7.
Int J Mol Sci ; 24(13)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37445775

RESUMEN

Ionic liquids (ILs) have presented excellent behaviors in the separation of azeotropes in extractive distillation. However, the intrinsic molecular nature of ILs in the separation of azeotropic systems is not clear. In this paper, Fourier-transform infrared spectroscopy (FTIR) and theoretical calculations were applied to screen the microstructures of ethyl propionate-n-propanol-1-ethyl-3-methylimidzolium acetate ([EMIM][OAC]) systems before and after azeotropy breaking. A detailed vibrational analysis was carried out on the v(C=O) region of ethyl propionate and v(O-D) region of n-propanol-d1. Different species, including multiple sizes of propanol and ethyl propionate self-aggregators, ethyl propionate-n-propanol interaction complexes, and different IL-n-propanol interaction complexes, were identified using excess spectroscopy and confirmed with theoretical calculations. Their changes in relative amounts were also observed. The hydrogen bond between n-propanol and ethyl propionate/[EMIM][OAC] was detected, and the interaction properties were also revealed. Overall, the intrinsic molecular nature of the azeotropy breaking was clear. First, the interactions between [EMIM][OAC] and n-propanol were stronger than those between [EMIM][OAC] and ethyl propionate, which influenced the relative volatilities of the two components in the system. Second, the interactions between n-propanol and [EMIM][OAC] were stronger than those between n-propanol and ethyl propionate. Hence, adding [EMIM][OAC] could break apart the ethyl propionate-n-propanol complex (causing the azeotropy in the studied system). When x([EMIM][OAC]) was lower than 0.04, the azeotropy still existed mainly because the low IL could not destroy the whole ethyl propionate-n-propanol interaction complex. At x(IL) > 0.04, the whole ethyl propionate-n-propanol complex was destroyed, and the azeotropy disappeared.


Asunto(s)
Líquidos Iónicos , Líquidos Iónicos/química , 1-Propanol , Espectroscopía Infrarroja por Transformada de Fourier , Propanoles
8.
Angew Chem Int Ed Engl ; 62(12): e202218540, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36710242

RESUMEN

The syntheses and magnetic properties of organometallic heterometallic compounds [K(THF)6 ]{CoI [(µ3 -HAN)RE2 Cp*4 ]2 } (1-RE) and [K(Crypt)]2 {CoI [(µ3 -HAN)RE2 Cp*4 ]2 } (2-RE) containing hexaazatrinaphthylene radicals (HAN⋅3- ) and four rare earth (RE) ions are reported. 1-RE shows isolable species with ligand-based mixed valency as revealed by cyclic voltammetry (CV) thus leading to the isolation of 2-RE via one-electron chemical reduction. Strong electronic communication in mixed-valency supports stronger overall ferromagnetic behaviors in 2-RE than 1-RE containing Gd and Dy ions. Ac magnetic susceptibility data reveal 1-Dy and 2-Dy both exhibit slow magnetic relaxation. Importantly, larger coercive field was observed in the hysteresis of 2-Dy at 2.0 K, indicating the enhanced SMM behavior compared with 1-Dy. Ligand-based mixed-valency strategy has been used for the first time to improve the magnetic coupling in lanthanide (Ln) SMMs, thus opening up new ways to construct strongly coupled Ln-SMMs.

9.
J Am Chem Soc ; 144(33): 15193-15202, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35926139

RESUMEN

Data carriers using spin waves in spintronic and magnonic logic devices offer operation at low power consumption and free of Joule heating yet requiring noncollinear spin structures of small sizes. Heterometallic rings can provide such an opportunity due to the controlled spin-wave transmission within such a confined space. Here, we present a series of {ScnGdn} (n = 4, 6, 8) heterometallic rings, which are the first Sc-Ln clusters to date, with tunable magnetic interactions for spin-wave excitations. By means of time- and temperature-dependent spin dynamics simulations, we are able to predict distinct spin-wave excitations at finite temperatures for Sc4Gd4, Sc6Gd6, and Sc8Gd8. Such a new model is previously unexploited, especially due to the interplay of antiferromagnetic exchange, dipole-dipole interaction, and ring topology at low temperatures, rendering the importance of the latter to spin-wave excitations.

10.
Inorg Chem ; 61(25): 9557-9563, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35687879

RESUMEN

External stimuli-responsive phase transition of metal-organic frameworks (MOFs) introduces intriguing functions for diverse applications under practical settings. Herein, we reported a phase transition from cubic Ce-UiO-66 to triclinic Ce-BDC-OH under light irradiation. Such a phase transition underwent a ligand-to-metal charge transfer process, which was unambiguously revealed by Fourier transform infrared spectroscopy, nuclear magnetic resonance, electron paramagnetic resonance, etc. We proposed a phase transition mechanism through (1) the photoreduction of the metal core from Ce4+ into Ce3+; (2) the photogeneration of •OH and hydroxylation of BDC into BDC-OH; and (3) the carboxylate migration and lattice rearrangement for transitions. The phenomenon of the Ce4+-to-Ce3+ reduction also enables a diamagnetism-to-paramagnetism transition, suggesting its potential as a photostimulus-responsive magnetic switch.

11.
Inorg Chem ; 61(1): 227-235, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34939782

RESUMEN

The hexagonal-bipyramidal lanthanide(III) complex [Dy(OtBu)Cl(18-C-6)][BPh4] (1; 18-C-6 = 1,4,7,10,13,16-hexaoxacyclooctadecane ether) displays an energy barrier for magnetization reversal (Ueff) of ca. 1000 K in a zero direct-current field. Temperature-dependent X-ray diffraction studies of 1 down to 30 K reveal bending of the Cl-Ln-OtBu angle at low temperature. Using ab initio calculations, we show that significant bending of the O-Dy-Cl angle upon cooling from 273 to 100 K leads to a ca. 10% decrease in the energy of the excited electronic states. A thorough exploration of the temperature and field dependencies of the magnetic relaxation rate reveals that magnetic relaxation is dictated by five mechanisms in different regimes: Orbach, Raman-I, quantum tunnelling of magnetization, and Raman-II, in addition to the observation of a phonon bottleneck effect.

12.
Org Biomol Chem ; 20(6): 1191-1195, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35072190

RESUMEN

Introducing a weak covalent bond into an originally highly fluorescent molecule to create a non-fluorescent probe is able to provide a new way to detect some nucleophilic targets with enhanced sensitivity. Herein, this is the first time that a tetraphenylethene (TPE)-based probe (TPEONO2) bearing a p-nitrobenzenesulfonyl moiety for the sensing of F- ions in aqueous solution via a cleavage reaction of the sulfonyl ester bond to induce aggregation-induced emission (AIE) has been reported.

13.
Angew Chem Int Ed Engl ; 61(26): e202206022, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35543224

RESUMEN

The fast Raman relaxation process via a virtual energy level has become a puzzle for how to chemically engineer single-molecule magnets (SMMs) with better performance. Here, we use the trifluoromethyl group to systematically substitute the methyl groups in the axial position of the parent bis-butoxide pentapyridyl dysprosium(III) SMM. The resulting complexes-[Dy(OLA )2 py5 ][BPh4 ] (LA =CH(CF3 )2 - 1, CH2 CF3 - 2, CMe2 CF3 - 3)-show progressively enhanced TB hys (@100 Oe s-1 ) from 17 K (for 3), 20 K (for 2) to 23 K (for 1). By experimentally identifying the varied under barrier relaxation energy in the 5-500 cm-1 regime, we are able to identify that the C-F bond related vibration energy of the axial ligand ranging from 200 to 350 cm-1 is the key variant for this improvement. Thus, this finding not only reveals a correlation between the structure and the Raman process but also provides a paradigm for how to apply the vibronic barrier model to analyze multi-phonon relaxation processes in lanthanide SMMs.

14.
Angew Chem Int Ed Engl ; 61(29): e202203285, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35426226

RESUMEN

A family of fully sandwiched arachno-lanthanacarborane complexes formulated as {η6 -[µ-1,2-[o-C6 H4 (CH2 )2 ]-1,2-C2 B10 H10 ]2 Ln}{Li5 (THF)10 } (Ln=Tb, Dy, Ho, Er, Y) is successfully synthesized, where the "carbons-adjacent" carboranyl ligand (arachno-R2 -C2 B10 H10 4- ) bears four negative charges and coordinates to the central lanthanide ions using the hexagonal η6 C2 B4 face. Thus, the central lanthanide cations are pseudo-twelve-coordinate and have an approximate pseudo-D6h symmetry or hexagonal-prismatic geometry. As the crystal field effect imparted by this geometry is still unknown, we thoroughly investigated the magnetic properties of this series of complexes and found that the crystal field imposed by this ligand causes a relation of Tb>Dy>Ho>Er for the energy gaps between the ground and the first excited states, which is of striking resemblance to the ferrocenophane and phthalocyanine ligands although the latter two ligands give disparate local coordination geometries. Moreover, the effective energy barrier to magnetization reversal of 445(10) K, the observable hysteresis loop up to 4 K and the relaxation time of the yttrium-diluted sample reaching 193(17) seconds at 2 K under an optimized field for the Tb analogue of this family of arachno-lanthanacarborane complexes, render a new benchmark for Tb3+ -based single-molecule magnets.

15.
Chemistry ; 27(8): 2623-2627, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-32996640

RESUMEN

Three six-coordinate DyIII single-molecule magnets (SMMs) [Dy(Ot Bu)2 (L)4 ]+ with local D4h symmetry are obtained by optimizing the equatorial ligands. One of the compounds with L=4-phenylpyridine shows an energy barrier (Ueff ) of 2075(11) K, which is the third largest Ueff , and the first Ueff >2000 K for SMMs with axial-type symmetry so far. Ab initio analysis indicates that the exceptional uniaxial magnetic anisotropy is deeply related to the axially compressed octahedral geometry. This work provides a new insight into the local D4h symmetry for high-performance SMMs.

16.
Inorg Chem ; 60(3): 1344-1351, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33423464

RESUMEN

Systematic substituent variations on amidinate ligands bring delicate changes of CrN4 coordination in a family of chromium(II) complexes with the common formula of Cr(RNC(CH3)NR)2, where R = iPr (1), Cy (2), Dipp (Dipp = 2, 6-diisopropylphenyl) (3), and tBu (4). With the largest substituent group, 4 shows the largest distortion of the N4 coordination geometry from square-planar to seesaw shape, which leads to its field-induced single-molecule magnet (SMM) behavior. This is an indication that 4 has the strongest axial magnetic anisotropy and/or optimized magnetic relaxation process. Combined with high-frequency/field electron paramagnetic resonance (HF-EPR) experiments and ab initio calculations, we deduce that the smallest energy gap between ground 4Ψ0 and the first excited 4Ψ1 orbitals in 4 contributes the most to its strongest magnetic anisotropy. Moreover, the lower E value of 4 ensures its being a field-induced SMM. Specifically, the D and E values were found to be correlated to the dihedral angle between the ΔN1CrN2 and ΔN3CrN4 triangles, indicating that distortion from ideal square-planar geometry to the seesaw help increase axial magnetic anisotropy and suppress the transversal part. Thus, the study on this system not only expands the family of Cr(II)-based SMMs but also contributes to a deeper understanding of magneto-structural correlation in four-coordinate Cr(II) SMMs.

17.
J Am Chem Soc ; 142(44): 18763-18768, 2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33085462

RESUMEN

Here we report two highly emissive perylene diimide (PDI)-based metallacages and explore their complexation with polycyclic aromatic hydrocarbons, such as pyrene, triphenylene, and perylene. The fluorescence quantum yields of metallacages exceed 90% and their binding constants with perylene can reach as high as 2.41 × 104 M-1 in acetonitrile. These features enable further tuning of the emission of the host-guest complexes to obtain white-light emission based on the complementary orange emission of the metallacages and the blue emission of perylene. Moreover, owing to the huge differences of their quantum yields in solution and in the solid state, the host-guest complexes are successfully employed for information encryption. This study offers a general approach for the construction of emissive metallacages and explores their application for information encryption.

18.
J Am Chem Soc ; 142(10): 4663-4670, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32033517

RESUMEN

Gigantic coordination molecules assembled from a large number of metal ions and organic ligands are structurally and functionally challenging to characterize. Here we show that a heterometallic cluster [Ni36Gd102(OH)132(mmt)18(dmpa)18(H2dmpa)24(CH3COO)84(SO4)18(NO3)18(H2O)30]·Br6(NO3)6·(H2O)x·(CH3OH)y, (1, x ≈ 130, y ≈ 60), shaped like a "Star of David", can be synthesized using a "mixed-ligand" and "sulfate-template" strategy. In terms of metal nuclearity number, 1 is the second largest 3d-4f cluster to date. In the solid state, 1 is porous after removing the lattice guests. The N2 adsoption experiment reveals that the BET and Langmuir surface areas are 299.8 and 412.0 cm2 g-1, respectively. CO2 adsorption at 298 K gives the amount of 45 cm3 g-1 for 1. More importantly, 1 is soluble in common organic solvents and exhibits high solution stability revealed by high resolution MALDI-TOF mass spectroscopy, small-angle X-ray scattering (SAXS), and low-dose transmission electron microscopy. The solubility and the potential open metal sites owing to the labile coordinating components prompted us to investigate the photocatalytic properties of 1, which displays high selectivity and efficiency for reduction of CO2 to CO with turnover number and turnover frequency of 29700 and 1.2 s-1, respectively. These values are higher than most catalysts working under the same conditions, presumably due to the strong Ni-CO2 binding effect. In addition, the large percentage of Gd(III) in 1 leads to a large magnetic entropy change (41.3 J·kg-1·K-1) at 2.0 K for ΔH = 7 T.

19.
Chemistry ; 26(26): 5893-5902, 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32073707

RESUMEN

Although the development of single-molecule magnets (SMMs) is rapid, there are only two families of high energy barrier (Ueff ) dysprosium(III) SMMs known so far: the cyclopentadienyl (Cp) family with a sandwich structure and the pentagonal-bipyramidal (PB) family with D5h symmetry. These high-barrier SMMs, which usually possess Ueff >500 cm-1 allow the separate study of the four magnetic relaxation paths, namely, direct, quantum tunnelling, Raman and Orbach processes, in detail. Whereas the first family is chemically more challenging to modify the Cp rings, it is shown herein that the latter family, with the common formulae [DyX1 X2 (Leq )5 ]+ , such as X1 /X2 =- OCMe3 , - OSiMe3 , - OPh, Cl- or Br- ; Leq =THF/pyridine/4-methylpyridine, can be readily fine-tuned with a range of axial and equatorial ligands by simple substitution reactions. This allows unambiguous confirmation that the Ueff mainly depends on the identity of X1 and X2 , rather than on Leq . More importantly, the fitted parameters are barrier dependent. If X1 is an O donor and X2 is a halide, 500

20.
Chemistry ; 26(30): 6773-6777, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32097529

RESUMEN

A dichlorido-bridged dinuclear dysprosium(III) single-molecule magnet [Dy2 L2 (µ-Cl)2 (thf)2 ] has been made by using a diamine-bis(phenolate) ligand, H2 L. Magnetic studies show an energy barrier for magnetisation reversal (Ueff ) around 1000 K. An exchange-biasing effect is clearly seen in magnetic hysteresis with steps up to 3 K. Ab initio calculations exclude the possibility of a pure dipolar origin of this effect leading to the conclusion that super-exchange through the chloride bridging ligands is important.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA