Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.003
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(11): 2746-2766.e25, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38631355

RESUMEN

Precise control of gene expression levels is essential for normal cell functions, yet how they are defined and tightly maintained, particularly at intermediate levels, remains elusive. Here, using a series of newly developed sequencing, imaging, and functional assays, we uncover a class of transcription factors with dual roles as activators and repressors, referred to as condensate-forming level-regulating dual-action transcription factors (TFs). They reduce high expression but increase low expression to achieve stable intermediate levels. Dual-action TFs directly exert activating and repressing functions via condensate-forming domains that compartmentalize core transcriptional unit selectively. Clinically relevant mutations in these domains, which are linked to a range of developmental disorders, impair condensate selectivity and dual-action TF activity. These results collectively address a fundamental question in expression regulation and demonstrate the potential of level-regulating dual-action TFs as powerful effectors for engineering controlled expression levels.


Asunto(s)
Factores de Transcripción , Animales , Humanos , Ratones , Regulación de la Expresión Génica , Mutación , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Línea Celular
2.
Nature ; 618(7963): 193-200, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225986

RESUMEN

Odorants are detected as smell in the nasal epithelium of mammals by two G-protein-coupled receptor families, the odorant receptors and the trace amine-associated receptors1,2 (TAARs). TAARs emerged following the divergence of jawed and jawless fish, and comprise a large monophyletic family of receptors that recognize volatile amine odorants to elicit both intraspecific and interspecific innate behaviours such as attraction and aversion3-5. Here we report cryo-electron microscopy structures of mouse TAAR9 (mTAAR9) and mTAAR9-Gs or mTAAR9-Golf trimers in complex with ß-phenylethylamine, N,N-dimethylcyclohexylamine or spermidine. The mTAAR9 structures contain a deep and tight ligand-binding pocket decorated with a conserved D3.32W6.48Y7.43 motif, which is essential for amine odorant recognition. In the mTAAR9 structure, a unique disulfide bond connecting the N terminus to ECL2 is required for agonist-induced receptor activation. We identify key structural motifs of TAAR family members for detecting monoamines and polyamines and the shared sequence of different TAAR members that are responsible for recognition of the same odour chemical. We elucidate the molecular basis of mTAAR9 coupling to Gs and Golf by structural characterization and mutational analysis. Collectively, our results provide a structural basis for odorant detection, receptor activation and Golf coupling of an amine olfactory receptor.


Asunto(s)
Aminas Biogénicas , Odorantes , Percepción Olfatoria , Poliaminas , Receptores Odorantes , Animales , Ratones , Aminas Biogénicas/análisis , Aminas Biogénicas/química , Aminas Biogénicas/metabolismo , Microscopía por Crioelectrón , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/ultraestructura , Odorantes/análisis , Percepción Olfatoria/fisiología , Poliaminas/análisis , Poliaminas/química , Poliaminas/metabolismo , Receptores de Amina Biogénica/química , Receptores de Amina Biogénica/genética , Receptores de Amina Biogénica/metabolismo , Receptores de Amina Biogénica/ultraestructura , Receptores Odorantes/química , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Receptores Odorantes/ultraestructura , Olfato/fisiología , Espermidina/análisis , Espermidina/química , Espermidina/metabolismo
3.
Plant Cell ; 36(2): 367-382, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37930821

RESUMEN

The gaseous signaling molecule nitric oxide (NO) plays an important role in breaking seed dormancy. NO induces a decrease in abscisic acid (ABA) content by transcriptionally activating its catabolic enzyme, the ABA 8'-hydroxylase CYP707A2. However, the underlying mechanism of this process remains unclear. Here, we report that the transcription factor MYB30 plays a critical role in NO-induced seed germination in Arabidopsis (Arabidopsis thaliana). MYB30 loss-of-function attenuates NO-mediated seed dormancy breaking. MYB30 triggers a NO-induced decrease in ABA content during germination by directly promoting CYP707A2 expression. NO induces S-nitrosylation at Cys-49 of MYB30 and enhances its transcriptional activity. Conversely, the ABA receptors PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR) interact with MYB30 and repress its transcriptional activity. ABA promotes the interaction between PYL4 and MYB30, whereas S-nitrosylation releases the PYL4-mediated inhibition of MYB30 by interfering with the PYL4-MYB30 interaction. Genetic analysis showed that MYB30 functions downstream of PYLs during seed dormancy and germination in response to NO. Furthermore, MYB30 mutation significantly represses the reduced dormancy phenotype and the enhanced CYP707A2 expression of the pyr1 pyl1 pyl2 pyl4 quadruple mutant. Our findings reveal that S-nitrosylation of MYB30 precisely regulates the balance of seed dormancy and germination, providing insights into the underlying mechanism of NO-promoted seed germination.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Germinación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Óxido Nítrico/metabolismo , Semillas/genética , Semillas/metabolismo , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Nat Chem Biol ; 20(4): 484-492, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37945893

RESUMEN

GPR101 is an orphan G protein-coupled receptor actively participating in energy homeostasis. Here we report the cryo-electron microscopy structure of GPR101 constitutively coupled to Gs heterotrimer, which reveals unique features of GPR101, including the interaction of extracellular loop 2 within the 7TM bundle, a hydrophobic chain packing-mediated activation mechanism and the structural basis of disease-related mutants. Importantly, a side pocket is identified in GPR101 that facilitates in silico screening to identify four small-molecule agonists, including AA-14. The structure of AA-14-GPR101-Gs provides direct evidence of the AA-14 binding at the side pocket. Functionally, AA-14 partially restores the functions of GH/IGF-1 axis and exhibits several rejuvenating effects in wild-type mice, which are abrogated in Gpr101-deficient mice. In summary, we provide a structural basis for the constitutive activity of GPR101. The structure-facilitated identification of GPR101 agonists and functional analysis suggest that targeting this orphan receptor has rejuvenating potential.


Asunto(s)
Receptores Acoplados a Proteínas G , Ratones , Animales , Microscopía por Crioelectrón , Receptores Acoplados a Proteínas G/metabolismo , Ligandos
5.
Plant Cell ; 34(2): 927-944, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34865139

RESUMEN

High soil salinity negatively affects plant growth and development, leading to a severe decrease in crop production worldwide. Here, we report that a secreted peptide, PAMP-INDUCED SECRETED PEPTIDE 3 (PIP3), plays an essential role in plant salt tolerance through RECEPTOR-LIKE KINASE 7 (RLK7) in Arabidopsis (Arabidopsis thaliana). The gene encoding the PIP3 precursor, prePIP3, was significantly induced by salt stress. Plants overexpressing prePIP3 exhibited enhanced salt tolerance, whereas a prePIP3 knockout mutant had a salt-sensitive phenotype. PIP3 physically interacted with RLK7, a leucine-rich repeat RLK, and salt stress enhanced PIP3-RLK7 complex formation. Functional analyses revealed that PIP3-mediated salt tolerance is dependent on RLK7. Exogenous application of synthetic PIP3 peptide activated RLK7, and salt treatment significantly induced RLK7 phosphorylation in a PIP3-dependent manner. Notably, MITOGEN-ACTIVATED PROTEIN KINASE3 (MPK3) and MPK6 were downstream of the PIP3-RLK7 module in salt response signaling. Activation of MPK3/6 was attenuated in pip3 or rlk7 mutants under saline conditions. Therefore, MPK3/6 might amplify salt stress response signaling in plants for salt tolerance. Collectively, our work characterized a novel ligand-receptor signaling cascade that modulates plant salt tolerance in Arabidopsis. This study contributes to our understanding of how plants respond to salt stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Tolerancia a la Sal , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Plantas Modificadas Genéticamente , Estrés Salino/fisiología , Tolerancia a la Sal/fisiología
6.
Proc Natl Acad Sci U S A ; 119(15): e2117004119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35394864

RESUMEN

GPR126 is a member of the adhesion G protein-coupled receptors (aGPCRs) that is essential for the normal development of diverse tissues, and its mutations are implicated in various pathological processes. Here, through screening 34 steroid hormones and their derivatives for cAMP production, we found that progesterone (P4) and 17-hydroxyprogesterone (17OHP) could specifically activate GPR126 and trigger its downstream Gi signaling by binding to the ligand pocket in the seven-transmembrane domain of the C-terminal fragment of GPR126. A detailed mutagenesis screening according to a computational simulated structure model indicated that K1001ECL2 and F1012ECL2 are key residues that specifically recognize 17OHP but not progesterone. Finally, functional analysis revealed that progesterone-triggered GPR126 activation promoted cell growth in vitro and tumorigenesis in vivo, which involved Gi-SRC pathways in a triple-negative breast cancer model. Collectively, our work identified a membrane receptor for progesterone/17OHP and delineated the mechanisms by which GPR126 participated in potential tumor progression in triple-negative breast cancer, which will enrich our understanding of the functions and working mechanisms of both the aGPCR member GPR126 and the steroid hormone progesterone.


Asunto(s)
Progesterona , Receptores Acoplados a Proteínas G , Receptores de Progesterona , Neoplasias de la Mama Triple Negativas , 17-alfa-Hidroxiprogesterona/metabolismo , Línea Celular Tumoral , Humanos , Progesterona/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Transducción de Señal , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo
7.
Ann Hematol ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761184

RESUMEN

Bruton's tyrosine kinase inhibitors (BTKi) exhibit superior efficacy in relapsed/refractory primary central nervous system lymphoma (PCNSL), but few studies have evaluated patients with newly diagnosed PCNSL, and even fewer studies have evaluated differences in efficacy between treatment with BTKi and traditional chemotherapy. This study retrospectively analyzed the clinical characteristics of 86 patients with PCNSL and identified predictors of poor prognosis for overall survival (OS). After excluding patients who only received palliative care, 82 patients were evaluated for efficacy and survival. According to the induction regimen, patients were divided into the traditional chemotherapy, BTKi combination therapy, and radiotherapy groups; the objective response rates (ORR) of the three groups were 71.4%, 96.2%, and 71.4% (P = 0.037), respectively. Both median progression-free survival and median duration of remission showed statistically significant differences (P = 0.019 and P = 0.030, respectively). The median OS of the BTKi-containing therapy group was also longer than that of the traditional chemotherapy group (not reached versus 47.8 (32.5-63.1) months, P = 0.038).Seventy-one patients who achieved an ORR were further analyzed, and achieved an ORR after four cycles of treatment and maintenance therapy had prolonged OS (P = 0.003 and P = 0.043, respectively). In conclusion, survival, and prognosis of patients with newly diagnosed PCNSL are influenced by the treatment regimen, with the BTKi-containing regimen showing great potential.

8.
Eur Radiol ; 34(1): 226-235, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37552260

RESUMEN

OBJECTIVES: To evaluate the early prevalence of anthracycline-induced cardiotoxicity (AIC) and anthracycline-induced liver injury (AILI) using T2 and T2* mapping and to explore their correlations. MATERIALS AND METHODS: The study included 17 cardiotoxic rabbits that received weekly injections of doxorubicin and magnetic resonance imaging (MRI) every 2 weeks for 10 weeks. Cardiac function and T2 and T2* values were measured on each period. Histopathological examinations for two to five rabbits were performed after each MRI scan. The earliest sensitive time and the threshold of MRI parameters for detecting AIC and AILI based on these MRI parameters were obtained. Moreover, the relationship between myocardial and liver damage was assessed. RESULTS: Early AIC could be detected by T2 mapping as early as the second week and focused on the 7th, 11th, and 12th segments of left ventricle. The cutoff value of 46.64 for the 7th segment had the best diagnostic value, with an area under the curve (of 0.767, sensitivity of 100%, and specificity of 52%. T2* mapping could detect the change in iron content for early AIC at the middle interventricular septum and AILI as early as the sixth week (p = 0.014, p = 0.027). The T2* values of the middle interventricular septum showed a significant positive association with the T2* values of the liver (r = 0.39, p = 0.002). CONCLUSION: T2 and T2* mapping showed value one-stop assessment of AIC and AILI and could obtain the earliest MRI diagnosis point and optimal parameter thresholds for these conditions. CLINICAL RELEVANCE STATEMENT: Anthracycline-induced cardiotoxicity could be detected by T2 mapping as earlier as the second week, mainly focusing on the 7th, 11th, and 12th segments of left ventricle. Combined with T2* mapping, hepatoxicity and supplementary cardiotoxicity were assessed by one-stop scan. KEY POINTS: • MRI screening time of cardiotoxicity was as early as the second week with focusing on T2 values of the 7th, 11th, and 12th segments of left ventricle. • T2* mapping could be used as a complement to T2 mapping to evaluate cardiotoxicity and as an effective index to detect iron change in the early stages of chemotherapy. • The T2* values of the middle interventricular septum showed a significant positive association with the T2* values of the liver, indicating that iron content in the liver and heart increased with an increase in the chemotherapeutic drugs.


Asunto(s)
Antraciclinas , Antibióticos Antineoplásicos , Cardiotoxicidad , Doxorrubicina , Animales , Conejos , Antraciclinas/efectos adversos , Antibióticos Antineoplásicos/efectos adversos , Cardiotoxicidad/diagnóstico por imagen , Cardiotoxicidad/tratamiento farmacológico , Hierro , Hígado/diagnóstico por imagen , Doxorrubicina/uso terapéutico
9.
Inorg Chem ; 63(23): 10511-10518, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38768636

RESUMEN

Selective actinide coordination (from lanthanides) is critical for both nuclear waste management and sustainable development of nuclear power. Hydrophilic ligands used as masking agents to withhold actinides in the aqueous phase are currently highly pursued, while synthetic accessibility, water solubility, acid resistance, and extraction capability are the remaining problems. Most reported hydrophilic ligands are only effective at low acidity. We recently proved that the phenanthroline diimide skeleton was an efficient building block for the construction of highly efficient acid-resistant hydrophilic lanthanide/actinide separation agents, while the limited water solubility hindered the loading capability of the ligand. Herein, amine was introduced as the terminal solubilizing group onto the phenanthroline diimide backbone, which after protonation in acid showed high water solubility. The positively charged terminal amines enhanced the ligand water solubility to a large extent, which, on the other side, was believed to be detrimental for the coordination and complexation of the metal cations. We showed that by delicately adjusting the alkyl chain spacing, this intuitive disadvantage could be relieved and superior extraction performances could be achieved. This work holds significance for both hydrophilic lanthanide/actinide separation ligand design and, concurrently, offers insights into the development of water-soluble lanthanide/actinide complexes for biomedical and bioimaging applications.

10.
Methods ; 220: 134-141, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37967757

RESUMEN

Automated 12-lead electrocardiographic (ECG) classification algorithms play an important role in the diagnosis of clinical arrhythmias. Current methods that perform well in the field of automatic ECG classification are usually based on Convolutional Neural Networks (CNN) or Transformer. However, due to the intrinsic locality of convolution operations, CNN can't extract long-dependence between series. On the other side, the Transformer design includes a built-in global self-attention mechanism, but it doesn't pay enough attention to local features. In this paper, we propose DAMS-Net, which combines the advantages of Transformer and CNN, introducing a spatial attention module and a channel attention module using a CNN-Transformer hybrid encoder to adaptively focus on the significant features of global and local parts between space and channels. In addition, our proposal fuses multi-scale information to capture high and low-level semantic information by skip-connections. We evaluate our method on the 2018 Physiological Electrical Signaling Challenge dataset, and our proposal achieves a precision rate of 83.6%, a recall rate of 84.7%, and an F1-score of 0.839. The classification performance is superior to all current single-model methods evaluated in this dataset. The experimental results demonstrate the promising application of our proposed method in 12-lead ECG automatic classification tasks.


Asunto(s)
Algoritmos , Electrocardiografía , Redes Neurales de la Computación , Semántica , Transducción de Señal , Procesamiento de Imagen Asistido por Computador
11.
J Biochem Mol Toxicol ; 38(1): e23523, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37654027

RESUMEN

Pyroptosis, a newly discovered pro-inflammatory programmed necrosis of cells, serves as an initiating and promoting event that leads to intervertebral disc (IVD) degeneration (IDD). Endoplasmic reticulum stress (ERS) and autophagy are vital regulatory mechanisms of cellular homeostasis, which is also closely related to IDD. However, the role and relationship of ERS and autophagy in the pyroptosis of nucleus pulposus cell (NPC) are not well understood. In this research, we aimed to elucidate the role and mechanism of ERS-C/EBP homologous protein (CHOP) in lipopolysaccharide (LPS)-induced cell pyroptosis and determine its interaction with autophagy. ERS and autophagy inducers or inhibitors were used or not in the preconditioning of rat NPCs. Cell viability, pyroptosis-related protein expression, caspase-1 activity assay, and enzyme-linked immunosorbent assay were performed to observe rat NPC pyroptosis after the treatment of LPS. Activation of the ERS pathway and autophagy were assessed by quantitative real-time PCR, western blot analyses, and immunofluorescence staining assay to classify the molecular mechanisms. Our results showed that LPS stimulation induced NPC pyroptosis with concomitant activation of the ERS-CHOP pathway and initiated autophagy. Activation of the ERS-CHOP pathway exacerbated rat NPC pyroptosis, whereas autophagy inhibited cell pyroptosis. LPS-induced cell pyroptosis and CHOP upregulation were negatively regulated by autophagy. LPS-induced autophagy was depressed by the ERS inhibitor but aggravated by the ERS inducer. Taken together, our findings suggested that LPS induced NPC pyroptosis by activating ERS-CHOP signaling and ERS mediated LPS-induced autophagy, which in turn alleviated NPC pyroptosis by inhibiting CHOP signaling.


Asunto(s)
Degeneración del Disco Intervertebral , Núcleo Pulposo , Ratas , Animales , Lipopolisacáridos/toxicidad , Núcleo Pulposo/metabolismo , Piroptosis , Estrés del Retículo Endoplásmico , Degeneración del Disco Intervertebral/metabolismo , Apoptosis/fisiología , Autofagia
12.
Neurol Sci ; 45(3): 873-881, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37945931

RESUMEN

Parkinson's disease (PD) is a gradual neurodegenerative disease. While drug therapy and surgical treatments have been the primary means of addressing PD, they do not offer a cure, and the risks associated with surgical treatment are high. Recent advances in cell reprogramming have given rise to new prospects for the treatment of Parkinson's disease (PD), with induced pluripotent stem cells (iPSCs), induced dopamine neurons (iDNs), and induced neural stem cells (iNSCs) being created. These cells can potentially be used in the treatment of Parkinson's disease. On the other hand, this article emphasizes the limits of iPSCs and iNSCs in the context of Parkinson's disease treatment, as well as approaches for direct reprogramming of somatic cells into iDNs. The paper will examine the benefits and drawbacks of directly converting somatic cells into iDNs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Neuronas Dopaminérgicas/fisiología , Enfermedad de Parkinson/terapia , Diferenciación Celular , Células Madre Pluripotentes Inducidas/fisiología
13.
Metab Brain Dis ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801506

RESUMEN

Diabetic cognitive impairment is a common complication in type 2 diabetes. Berberine (BBR) is an isoquinoline alkaloid that has been shown to have neuroprotective effects against diabetes. This study aimed to investigate the effect of BBR on the gray and white matter of the brain by using magnetic resonance imaging (MRI) and to explore the underlying mechanisms. The study used diabetic db/db mice and administered BBR (50 and 100 mg/kg) intragastrically for twelve weeks. Morris water maze was applied to examine cognitive function. T2-weighted imaging (T2WI) was performed to assess brain atrophy, and diffusion tensor imaging (DTI) combined with fiber tracking was conducted to monitor the structural integrity of the white matter, followed by histological immunostaining. Furthermore, the protein expressions of the phosphatidylinositol 3-kinase (PI3K)/ protein kinase B (AKT)/ glycogen synthase kinase-3ß (GSK-3ß) were detected. The results revealed that BBR significantly improved the spatial learning and memory of the db/db mice. T2WI exhibited ameliorated brain atrophy in the BBR-treated db/db mice, as evidenced by reduced ventricular volume accompanied by increased hippocampal volumes. DTI combined with fiber tracking revealed that BBR increased FA, fiber density and length in the corpus callosum/external capsule of the db/db mice. These imaging findings were confirmed by histological immunostaining. Notably, BBR significantly enhanced the protein levels of phosphorylated AKT at Ser473 and GSK-3ß at Ser9. Collectively, this study demonstrated that BBR significantly improved the cognitive function of the diabetic db/db mice through ameliorating brain atrophy and promoting white matter reorganization via AKT/GSK-3ß pathway.

14.
Sensors (Basel) ; 24(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38931492

RESUMEN

A staggered vane-shaped slot-line slow-wave structure (SV-SL SWS) for application in W-band traveling wave tubes (TWTs) is proposed in this article. In contrast to the conventional slot-line SWSs with dielectric substrates, the proposed SWS consists only of a thin metal sheet inscribed with periodic grooves and two half-metal enclosures, which means it can be easily manufactured and assembled and has the potential for mass production. This SWS not only solves the problem of the dielectric loading effect but also improves the heat dissipation capability of such structures. Meanwhile, the SWS design presented here covers a -15 dB S11 frequency range from 87.5 to 95 GHz. The 3-D simulation for a TWT based on the suggested SWS is also investigated. Under dual-electron injection conditions with a total voltage of 17.2 kV and a total current of 0.3 A, the maximum output power at 90 GHz is 200 W, with a 3 dB bandwidth up to 4 GHz. With a good potential for fabrication using microfabrication techniques, this structure can be a good candidate for millimeter-wave TWT applications.

15.
J Sci Food Agric ; 104(7): 3982-3991, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38252712

RESUMEN

BACKGROUND: Many diseases may be caused by pathogens and oxidative stress resulting from carcinogens. Earlier studies have highlighted the antimicrobial and antioxidant effects of plant essential oils (EO). It is crucial to effectively utilize agricultural waste to achieve a sustainable agricultural economy and protect the environment. The present study aimed to evaluate the potential benefits of EO extracted from the discarded peels of Citrus depressa Hayata (CD) and Citrus microcarpa Bunge (CM), synonyms of Citrus deliciosa Ten and Citrus japonica Thunb, respectively. RESULTS: Gas chromatography-mass spectrometry analysis revealed that the main compounds in CD-EO were (R)-(+)-limonene (38.97%), γ-terpinene (24.39%) and linalool (6.22%), whereas, in CM-EO, the main compounds were (R)-(+)-limonene (48.00%), ß-pinene (13.60%) and γ-terpinene (12.07%). CD-EO exhibited inhibitory effects on the growth of common microorganisms, including Candida albicans, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. However, CM-EO showed only inhibitory effects on E. coli. Furthermore, CD-EO exhibited superior antioxidant potential, as demonstrated by its ability to eliminate 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azinobis-3-ethylbenzthiazoline-6-sulfonate free radicals. Furthermore, CD-EO at a concentration of 100 µg mL-1 significantly inhibited 12-O-tetradecanoylphorbol-13-acetate-induced cancer transformation in mouse epidermal JB6 P+ cells (P < 0.05), possibly by up-regulating protein expression of nuclear factor erythroid 2-related factor 2 and its downstream antioxidant enzymes, such as NAD(P)H:quinone oxidoreductase 1, heme oxygenase-1 and UGT1A. CONCLUSION: These findings suggest that CD-EO exhibits inhibitory effects on pathogenic microorganisms, possesses antioxidant properties and has cancer chemopreventive potential. © 2024 Society of Chemical Industry.


Asunto(s)
Antiinfecciosos , Citrus , Monoterpenos Ciclohexánicos , Neoplasias , Aceites Volátiles , Animales , Ratones , Aceites Volátiles/química , Antioxidantes/farmacología , Antioxidantes/química , Limoneno/farmacología , Citrus/química , Escherichia coli , Antiinfecciosos/farmacología , Antiinfecciosos/química , Aceites de Plantas/química
16.
Glia ; 71(4): 1099-1119, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36579750

RESUMEN

Diabetes patients with painful diabetic neuropathy (PDN) show severe spinal atrophy, suggesting pathological changes of the spinal cord contributes to central sensitization. However, the cellular changes and underlying molecular mechanisms within the diabetic spinal cord are less clear. By using a rat model of type 1 diabetes (T1D), we noted an extensive and irreversible spinal astrocyte degeneration at an early stage of T1D, which is highly associated with the chronification of PDN. Molecularly, acetylation of astrocytic signal transducer and activator of transcription-3 (STAT3) that is essential for maintaining the homeostatic astrocytes population was significantly impaired in the T1D model, resulting in a dramatic loss of spinal astrocytes and consequently promoting pain hypersensitivity. Mechanistically, class IIa histone deacetylase, HDAC5 were aberrantly activated in spinal astrocytes of diabetic rats, which promoted STAT3 deacetylation by direct protein-protein interactions, leading to the PDN phenotypes. Restoration of STAT3 signaling or inhibition of HDAC5 rescued astrocyte deficiency and attenuated PDN in the T1D model. Our work identifies the inhibitory axis of HDAC5-STAT3 induced astrocyte deficiency as a key mechanism underlying the pathogenesis of the diabetic spinal cord that paves the way for potential therapy development for PDN.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Neuropatías Diabéticas , Animales , Ratas , Acetilación , Astrocitos/patología , Neuropatías Diabéticas/patología , Histona Desacetilasas/genética
17.
Mol Biol Evol ; 39(1)2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34718707

RESUMEN

Evolutionary radiation is a widely recognized mode of species diversification, but its underlying mechanisms have not been unambiguously resolved for species-rich cosmopolitan plant genera. In particular, it remains largely unknown how biological and environmental factors have jointly driven its occurrence in specific regions. Here, we use Rhododendron, the largest genus of woody plants in the Northern Hemisphere, to investigate how geographic and climatic factors, as well as functional traits, worked together to trigger plant evolutionary radiations and shape the global patterns of species richness based on a solid species phylogeny. Using 3,437 orthologous nuclear genes, we reconstructed the first highly supported and dated backbone phylogeny of Rhododendron comprising 200 species that represent all subgenera, sections, and nearly all multispecies subsections, and found that most extant species originated by evolutionary radiations when the genus migrated southward from circumboreal areas to tropical/subtropical mountains, showing rapid increases of both net diversification rate and evolutionary rate of environmental factors in the Miocene. We also found that the geographically uneven diversification of Rhododendron led to a much higher diversity in Asia than in other continents, which was mainly driven by two environmental variables, that is, elevation range and annual precipitation, and were further strengthened by the adaptation of leaf functional traits. Our study provides a good example of integrating phylogenomic and ecological analyses in deciphering the mechanisms of plant evolutionary radiations, and sheds new light on how the intensification of the Asian monsoon has driven evolutionary radiations in large plant genera of the Himalaya-Hengduan Mountains.


Asunto(s)
Rhododendron , Asia , Evolución Biológica , Filogenia , Plantas , Rhododendron/genética
18.
Plant Cell Physiol ; 64(7): 814-825, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37148388

RESUMEN

Floods impose detrimental effects on natural and agro-ecosystems, leading to a significant loss of worldwide crop production. Global climate change has even worsened this situation. Flooding is a continuous process including two stages of submergence and re-oxygenation, and both are harmful to plant growth and development, resulting in a serious decline in crop yield. Therefore, the understanding of plant flooding tolerance and developing flooding-resistant crops are of great significance. Here, we report that the Arabidopsis thaliana (Arabidopsis) R2R3-MYB transcription factor MYB30 participates in plant submergence response through 1-aminocyclopropane-1-carboxylic acid synthase 7 (ACS7) by repressing ethylene (ET) biosynthesis. The MYB30 loss-of-function mutant exhibits reduced submergence tolerance with a higher level of ET production, whereas the MYB30-overexpressing plant displays enhanced submergence tolerance and repressed ET production. The coding gene of ACS7 might be a direct target of MYB30 during the submergence response. MYB30 binds to the promoter of ACS7 and represses its transcription. The ACS7 loss-of-function mutant with defect in ET biosynthesis displays enhanced submergence tolerance, whereas plants overexpressing ACS7 exhibit a submergence-sensitive phenotype. Genetic analysis shows that ACS7 functions downstream of MYB30 in both ET biosynthesis and submergence response. Taken together, our work revealed a novel transcriptional regulation that modulates submergence response in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ecosistema , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regiones Promotoras Genéticas/genética , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
Proc Biol Sci ; 290(1999): 20230529, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37221845

RESUMEN

Deforestation is a major contributor to biodiversity loss, yet the impact of forest loss on daily microclimate variability and its implications for species with different daily activity patterns remain poorly understood. Using a recently developed microclimate model, we investigated the effects of deforestation on the daily temperature range (DTR) in low-elevation tropical regions and high-elevation temperate regions. Our results show that deforestation substantially increases DTR in these areas, suggesting a potential impact on species interactions. To test this hypothesis, we studied the competitive interactions between nocturnal burying beetles and all-day-active blowfly maggots in forested and deforested habitats in Taiwan. We show that deforestation leads to increased DTR at higher elevations, which enhances the competitiveness of blowfly maggots during the day and leads to a higher failure rate of carcass burial by the beetles at night. Thus, deforestation-induced temperature variability not only modulates exploitative competition between species with different daily activity patterns, but also likely exacerbates the negative impacts of climate change on nocturnal organisms. In order to limit potential adverse effects on species interactions and their ecological functions, our study highlights the need to protect forests, especially in areas where deforestation can greatly alter temperature variability.


Asunto(s)
Biodiversidad , Escarabajos , Animales , Temperatura , Cambio Climático , Fiebre , Larva
20.
Plant Cell ; 32(7): 2196-2215, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32371543

RESUMEN

Phytochromes are red (R) and far-red (FR) light photoreceptors in plants, and PHYTOCHROME-INTERACTING FACTORS (PIFs) are a group of basic helix-loop-helix family transcription factors that play central roles in repressing photomorphogenesis. Here, we report that MYB30, an R2R3-MYB family transcription factor, acts as a negative regulator of photomorphogenesis in Arabidopsis (Arabidopsis thaliana). We show that MYB30 preferentially interacts with the Pfr (active) forms of the phytochrome A (phyA) and phytochrome B (phyB) holoproteins and that MYB30 levels are induced by phyA and phyB in the light. It was previously shown that phytochromes induce rapid phosphorylation and degradation of PIFs upon R light exposure. Our current data indicate that MYB30 promotes PIF4 and PIF5 protein reaccumulation under prolonged R light irradiation by directly binding to their promoters to induce their expression and by inhibiting the interaction of PIF4 and PIF5 with the Pfr form of phyB. In addition, our data indicate that MYB30 interacts with PIFs and that they act additively to repress photomorphogenesis. In summary, our study demonstrates that MYB30 negatively regulates Arabidopsis photomorphogenic development by acting to promote PIF4 and PIF5 protein accumulation under prolonged R light irradiation, thus providing new insights into the complicated but delicate control of PIFs in the responses of plants to their dynamic light environment.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica de las Plantas , Luz , Fitocromo A/metabolismo , Fitocromo B/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Plantones/fisiología , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA