Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2402130, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678509

RESUMEN

Fluorescent elastomers are predominantly fabricated through doping fluorescent components or conjugating chromophores into polymer networks, which often involves detrimental effects on mechanical performance and also makes large-scale production difficult. Inspired by the heteroatom-rich microphase separation structures assisted by intensive hydrogen bonds in natural organisms, an ultra-robust fluorescent polyurethane elastomer is reported, which features a remarkable fracture strength of 87.2 MPa with an elongation of 1797%, exceptional toughness of 678.4 MJ m-3 and intrinsic cyan fluorescence at 445 nm. Moreover, the reversible fluorescence variation with temperature could in situ reveal the microphase separation of the elastomer in real time. By taking advantage of mechanical properties, intrinsic fluorescence and hydrogen bonds-promoted interfacial bonding ability, this fluorescent elastomer can be utilized as an auxetic skeleton for the elaboration of an integrated auxetic composite. Compared with the auxetic skeleton alone, the integrated composite shows an improved mechanical performance while maintaining auxetic deformation in a large strain below 185%, and its auxetic process can be visually detected under ultraviolet light by the fluorescence of the auxetic skeleton. The concept of introducing hydrogen-bonded heteroatom-rich microphase separation structures into polymer networks in this work provides a promising approach to developing fluorescent elastomers with exceptional mechanical properties.

2.
Adv Mater ; 36(6): e2309576, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37939373

RESUMEN

Gel materials are appealing due to their diverse applications in biomedicine, soft electronics, sensors, and actuators. Nevertheless, the existing synthetic gels are often plagued by feeble network structures and inherent defects associated with solvents, which compromise their mechanical load-bearing capacity and cast persistent doubts about their reliability. Herein, combined with attractive deep eutectic solvent (DES), a stepwise-enhanced strategy is presented to fabricate ultrarobust eutectogels. It focuses on the continuous modulation and optimization of polymer networks through complementary annealing and solvent exchange processes, which drives a progressive increase in both quantity and mass of the interconnected polymer chains at microscopic scale, hence contributing to the evolutionary enhancement of network structure. The resultant eutectogel exhibits superb mechanical properties, including record-breaking strength (31.8 MPa), toughness (76.0 MJ m-3 ), and Young's modulus (25.6 MPa), together with exceptional resistance ability to tear and crack propagation. Moreover, this eutectogel is able to be further programmed through photolithography to in situ create patterned eutectogel for imparting specific functionalities. Enhanced by its broad applicability to various DES combinations, this stepwise-enhanced strategy is poised to serve as a crucial template and methodology for the future development of robust gels.

3.
Adv Mater ; 35(42): e2304631, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37436838

RESUMEN

Auxetic materials are appealing due to their unique characteristics of transverse expansion while being axially stretched. Nevertheless, current auxetic materials are often produced by the introduction of diverse geometric structures through cutting or other pore-making processes, which heavily weaken their mechanical performance. Inspired by the skeleton-matrix structures in natural organisms, this study reports an integrated auxetic elastomer (IAE) composed of high-modulus cross-linked poly(urethane-urea) as a skeleton and low-modulus non-cross-linked poly(urethane-urea) as a complementary-shape matrix. Benefiting from disulfide bonds and hydrogen-bond-promoted dual dynamic interfacial healing, the resulting IAE is flat, void-free, and has no sharp soft-to-hard interface. Its fracture strength and elongation at the break are increased to 400% and 150%, respectively, of the values of corrugated re-entrant skeleton alone, while the negative Poisson's ratio (NPR) reserves within a strain range of 0%-104%. In addition, the advantageous mechanical and auxetic properties of this elastomer are further confirmed by finite element analysis. The concept of combining two dissimilar polymers into an integrated hybrid material solves the problem of the deterioration in mechanical performance of auxetic materials after subtractive manufacturing, while preserves the NPR effect in a large deformation, which provides a promising approach to robust auxetic materials for engineering applications.

4.
Environ Sci Pollut Res Int ; 28(1): 1061-1071, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32827120

RESUMEN

Biochar (BC) has been widely used to remove heavy metals from wastewater. However, due to the hydrophobicity of BC and the lack of its surface functional groups, the effect of metal ions adsorption onto BC is limited. In order to improve the adsorption efficiency, L-cysteine was used to modify biochar derived from pomelo peel (PP) to regulate surface structure. The characteristics of BC and cysteine/biochar composite (cys/BC) were analyzed by various characterization methods. Results showed that the hydrophilicity of biochar was enhanced, and the number of surface functional groups was increased, resulting to strong adsorption ability of Ag(I) (618.9 mg/g), Pb(II) (274.5 mg/g), and As(V) (34.7 mg/g) for cys/BC, which increased approximately by 15%, 35%, and 29% compared with that of BC, respectively. The adsorption process of Pb(II) onto cys/BC was fitted better by the Freundlich isotherm model and for Ag(I) and As(V) by the Langmuir isotherm model. Moreover, the adsorption kinetics followed pseudo-second-order equation and the adsorption process was controlled by the intraparticle diffusion for Ag(I), Pb(II), and As(V) adsorption onto cys/BC. In addition, the adsorption capacities of cys/BC for Ag(I), Pb(II), and As(V) decreased slightly after five adsorption/desorption cycles. Finally, the multiple adsorption mechanisms including functional groups, pore adsorption, surface complexation, and cations-π were analyzed. The paper demonstrated that the cys/BC composite could be reused as effective adsorbents for removing contaminants in the environment.


Asunto(s)
Cisteína , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Cinética , Contaminantes Químicos del Agua/análisis
5.
Artículo en Inglés | MEDLINE | ID: mdl-33629161

RESUMEN

Although biochar (BC) has been widely used to adsorb pollutants in environment due to its natural and green characteristics, the structural defects of BC limit the ability to remove various environmental pollutants in aqueous solution. In this study, oxidized biochar (OBC) and sulfhydryl biochar (SBC) derived from pomelo peel (PP) were prepared through an oxidation and esterification reaction. BC and modified BC were used for the removal of methylene blue (MB), Cd2+, and phenanthrene (PHE) in aqueous solution. The adsorption behavior and efficiency toward different types of pollutants were studied by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), Raman, X-ray photoelectron spectroscopy (XPS), kinetics, and isotherm model fitting. The results showed that the change of pH had great effect on MB and Cd2+ adsorption, but not on PHE. SBC not only possessed the newly formed sp2-hybridized domains with easy access to aromatic pollutants but also had multiple functional groups (-COOH, -OH, -SH, -NH2) that provided adsorption sites for positively charged pollutants. SBC was more flexible and efficient in purifying pollutants compared to BC and OBC, with the saturated adsorption capacities of MB (209.16 mg/g), Cd2+ (786.19 mg/g), and PHE (521.58 mg/g). Moreover, the adsorption kinetic and isotherms fitting showed that the adsorption mechanisms were closely related to the structure of biochar and the properties of pollutants, including π-π interaction, surface charge, electrostatic interaction, surface functional groups, and Van der Waals force. In addition, the analysis of structure-function relationship demonstrated the enhanced hydrophilicity and the easy exposure of the binding sites on OBC and SBC. Hence, it was significantly effective to regulate microstructure and interfacial properties to promote its adsorption behaviors of biochar.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA