Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
RSC Adv ; 12(55): 35517-35530, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36540399

RESUMEN

The metal or metal clusters and organic ligands are relevant to the selectivity and performance of phosphate removal in MOFs, and the electron structure, chemical characteristics, and preparation method also affect efficiency and commercial promotion. However, few reports focus on the above, especially for 2D MOF nanomaterials. In this work, two 2D Ln-TDA (Ln = La, Ce) nanosheets assembled via microwave- and ultrasonic-assisted methods are employed as adsorbents for phosphate (H2PO4 -, HPO4 2-) removal for the first time. Their microstructure and performance were characterized using XRD, TEM, SEM, AFM, FTIR, zeta potential, and DFT calculations. The prepared 2D Ln-TDA (Ln = La, Ce) nanosheets exposed more adsorption sites and effectively reduced the restrictions of mass transfer. Based on this, the Langmuir model was employed to estimate the maximum adsorption capacities of the two kinds of nanosheets, which reached 253.5 mg g-1 and 259.5 mg g-1, which are 553 times and 3054 times larger than those for bulk Ln-TDA (Ln = La, Ce), respectively. Additionally, the kinetic data showed that the adsorption equilibrium time is fast, approximately 15 min by the pseudo-second-order model. In addition, the prepared products not only have a wide application range (pH = 3-9) but also offer eco-safety in terms of residuals (no Ln leak out). Based on the XPS spectra, FTIR spectra and DFT calculations, the main adsorption mechanisms included ligand exchange and electrostatic interactions. This new insight provides a novel strategy to prepare 2D MOF adsorbents, achieving a more eco-friendly method (microwave- and ultrasonic-assisted synthesis) for preparing 2D Ln-based MOF nanosheets by coordinative unsaturation to boost phosphate adsorption.

2.
Nanoscale Res Lett ; 15(1): 48, 2020 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-32088775

RESUMEN

In the present work, a tubular nano-copper sulfide was successfully synthesized by hydrothermal method. The physical and chemical properties of the prepared materials were characterized by XRD, SEM, TEM, and BET. The synthesized copper sulfide was used as an adsorbent for removing 17α-ethynyl estradiol (EE2) and exhibited excellent adsorption properties. At 25 °C, 15 mg of adsorbent was applied for 50 mL of 5 mg/L EE2 solution, adsorption equilibrium was reached after 180 min, and the adsorption rate reached nearly 90%. In addition, the kinetics, isothermal adsorption, and thermodynamics of the adsorption process were discussed on the basis of theoretical calculations and experimental results. The theoretical maximum adsorption capacity of copper sulfide was calculated to be 147.06 mg/g. The results of this study indicated that copper sulfide was a stable and efficient adsorbent with promising practical applications.

3.
Nanoscale Res Lett ; 12(1): 518, 2017 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-28866785

RESUMEN

MnO2@PPy core-shell micromaterials are prepared by chemical polymerization of pyrrole on the MnO2 surface. The polypyrrole (PPy) is formed as a homogeneous organic shell on the MnO2 surface. The thickness of PPy shell can be adjusted by the usage of pyrrole. The analysis of SEM, FT-IR, X-ray photoelectron spectroscopy (XPS), thermo-gravimetric analysis (TGA), and XRD are used to confirm the formation of PPy shell. Galvanostatic cell cycling and electrochemical impedance spectroscopy (EIS) are used to evaluate the electrochemical performance as anode for lithium-ion batteries. The results show that after formation of MnO2@PPy core-shell micromaterials, the cyclic performance as anode for lithium-ion batteries is improved. Fifty microliters of PPy-coated caddice-clew-like MnO2 has the best cyclic performances as has 620 mAh g-1 discharge specific capacities after 300 cycles. As a comparison, the discharge specific capacity of bare MnO2 materials falls to below 200 mAh g-1 after 10 cycles. The improved lithium-storage cyclic stability of the MnO2@PPy samples attributes to the core-shell hybrid structure which can buffer the structural expansion and contraction of MnO2 caused by the repeated embedding and disengagement of Li ions and can prevent the pulverization of MnO2. This experiment provides an effective way to mitigate the problem of capacity fading of the transition metal oxide materials as anode materials for (lithium-ion batteries) LIBs.

4.
Nanoscale Res Lett ; 12(1): 575, 2017 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-29086045

RESUMEN

When testing the electrochemical performance of metal oxide anode for lithium-ion batteries (LIBs), binder played important role on the electrochemical performance. Which binder was more suitable for preparing transition metal oxides anodes of LIBs has not been systematically researched. Herein, five different binders such as polyvinylidene fluoride (PVDF) HSV900, PVDF 301F, PVDF Solvay5130, the mixture of styrene butadiene rubber and sodium carboxymethyl cellulose (SBR+CMC), and polyacrylonitrile (LA133) were studied to make anode electrodes (compared to the full battery). The electrochemical tests show that using SBR+CMC and LA133 binder which use water as solution were significantly better than PVDF. The SBR+CMC binder remarkably improve the bonding capacity, cycle stability, and rate performance of battery anode, and the capacity retention was about 87% after 50th cycle relative to the second cycle. SBR+CMC binder was more suitable for making transition metal oxides anodes of LIBs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA