Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Pathogens ; 13(3)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38535538

RESUMEN

Recent studies have suggested that periodontal disease and alterations in the oral microbiome may be associated with cognitive decline and Alzheimer's disease (AD) development. Here, we report a case-control study of oral microbiota diversity in AD patients compared to healthy seniors from Central Asia. We have characterized the bacterial taxonomic composition of the oral microbiome from AD patients (n = 64) compared to the healthy group (n = 71) using 16S ribosomal RNA sequencing. According to our results, the oral microbiome of AD has a higher microbial diversity, with an increase in Firmicutes and a decrease in Bacteroidetes in the AD group. LEfSe analysis showed specific differences at the genus level in both study groups. A region-based analysis of the oral microbiome compartment in AD was also performed, and specific differences were identified, along with the absence of differences in bacterial richness and on the functional side. Noteworthy findings demonstrated the decrease in periodontitis-associated bacteria in the AD group. Distinct differences were revealed in the distribution of metabolic pathways between the two study groups. Our study confirms that the oral microbiome is altered in AD. However, a comprehensive picture of the complete composition of the oral microbiome in patients with AD requires further investigation.

2.
Int J Alzheimers Dis ; 2024: 9741811, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39346576

RESUMEN

Recent studies strongly suggest that gut microbiome can influence brain functions and contribute to the development of Alzheimer's disease (AD). However, reported changes in the gut microbiomes in AD patients from different countries are not similar, and more research is needed to reveal the relationships between human microbiomes and AD in diverse ethnic populations. There is also an assumption that microbiome-associated peripheral inflammation might drive the development of sporadic AD. This cross-sectional study is aimed at analyzing the gut microbial profile and exploring potential associations with blood cytokines and some clinical parameters among individuals diagnosed with Alzheimer's in Kazakhstan. Consistent with previous studies, we have found that the microbial landscape in AD reveals specific alterations in the gut microbiome. Specifically, the AD patient group showed a decreased Firmicutes/Bacteroidetes ratio. The differential abundance analysis highlighted a dysbiosis in the gut microbiota of AD patients, marked by a reduced presence of Bifidobacterium, particularly B. breve. In our study, AD patients' altered gut microbiota composition notably features an increased presence of Pseudomonadota like Phyllobacterium and inflammatory bacteria such as Synergistetes and the Christensenellaceae family. The metabolic profiling of the AD microbiome reveals a predominant presence of pathways related to sugar, carrier molecules, tetrapyrrole, pyrimidine biosynthesis, and nucleic acid processing. This analysis also highlighted a marked reduction in SCFA, carbohydrate, polysaccharide, polyamine, and myo-inositol degradation pathways. The increases in the proinflammatory cytokines IL-1a, IL-8, IL-17A, IL-12p40, TNF-ß, MCP-1, IL-2, and IL-12p70 and the anti-inflammatory cytokines IL-10 and IL-13 were observed in AD patients. Key variables driving the separation of AD and controls include inflammatory markers (IL-1a and IL-8), growth factors (EGF), lipids (LDL), BMI, and gut microbes, like genus Tyzzerella and Turicibacter and species Parabacteroides distasonis and Bacteroides eggerthii. We have also demonstrated that almost all cytokines strongly correlate with serum adiponectin levels and specific microbial taxa in AD patients. Thus, our findings identify potential microbial and inflammatory signatures in an ethnically distinct cohort of AD patients. These could serve as AD biomarkers and microbiota-based therapeutic targets for treating AD.

3.
BMC Med Genomics ; 15(1): 262, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36527105

RESUMEN

BACKGROUND: The role of adiponectin (ADIPOQ) in Alzheimer's disease (AD) has been documented, however, demonstrating controversial results. In this study, we investigated blood serum ADIPOQ levels, methylation of the adiponectin gene promoter, and adiponectin receptors (AdipoR1 and AdipoR2) expression in blood samples isolated from AD patients and healthy controls. METHODS: We performed a case-control study including 248 subjects (98 AD patients and 150 healthy controls); ADIPOQ serum levels, AdipoR1, and AdipoR2 levels in PBMC were measured by ELISA Kits, and ADIPOQ gene methylation was analyzed using methyl-specific PCR. RESULTS: Serum adiponectin levels were threefold higher in the AD group compared to the controls. We have also found a positive correlation between adiponectin and MMSE scores and high-density lipoprotein cholesterol (HDL-C) in AD patients. A significant difference in the proportion of methylation of the CpG sites at - 74 nt of the ADIPOQ gene promoter was detected in AD cases, and the levels of adiponectin in blood serum were significantly higher in methylated samples in the AD group compared to controls. The amount of AdipoR1 was significantly higher among AD subjects, while the expression of AdipoR2 did not vary between AD patients and controls. CONCLUSION: These findings may contribute to a deeper understanding of the etiological factors leading to the development of dementia and may serve as a basis for the development of predictive biomarkers of AD.


Asunto(s)
Enfermedad de Alzheimer , Receptores de Adiponectina , Humanos , Receptores de Adiponectina/genética , Receptores de Adiponectina/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Metilación , Estudios de Casos y Controles , Enfermedad de Alzheimer/genética , Leucocitos Mononucleares/metabolismo
4.
Sci Rep ; 12(1): 15115, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36068280

RESUMEN

We have investigated the diversity and composition of gut microbiotas isolated from AD (Alzheimer's disease) patients (n = 41) and healthy seniors (n = 43) from Nur-Sultan city (Kazakhstan). The composition of the gut microbiota was characterized by 16S ribosomal RNA sequencing. Our results demonstrated significant differences in bacterial abundance at phylum, class, order, and genus levels in AD patients compared to healthy aged individuals. Relative abundance analysis has revealed increased amount of taxa belonging to Acidobacteriota, Verrucomicrobiota, Planctomycetota and Synergistota phyla in AD patients. Among bacterial genera, microbiotas of AD participants were characterized by a decreased amount of Bifidobacterium, Clostridia bacterium, Castellaniella, Erysipelotrichaceae UCG-003, Roseburia, Tuzzerella, Lactobacillaceae and Monoglobus. Differential abundance analysis determined enriched genera of Christensenellaceae R-7 group, Prevotella, Alloprevotella, Eubacterium coprostanoligenes group, Ruminococcus, Flavobacterium, Ohtaekwangia, Akkermansia, Bacteroides sp. Marseille-P3166 in AD patients, whereas Levilactobacillus, Lactiplantibacillus, Tyzzerella, Eubacterium siraeum group, Monoglobus, Bacteroides, Erysipelotrichaceae UCG-003, Veillonella, Faecalibacterium, Roseburia, Haemophilus were depleted. We have also found correlations between some bacteria taxa and blood serum biochemical parameters. Adiponectin was correlated with Acidimicrobiia, Faecalibacterium, Actinobacteria, Oscillospiraceae, Prevotella and Christensenellaceae R-7. The Christensenellaceae R-7 group and Acidobacteriota were correlated with total bilirubin, while Firmicutes, Acidobacteriales bacterium, Castellaniella alcaligenes, Lachnospiraceae, Christensenellaceae and Klebsiella pneumoniae were correlated with the level of CRP in the blood of AD patients. In addition, we report the correlations found between disease severity and certain fecal bacteria. This is the first reported study demonstrating gut microbiota alterations in AD in the Central Asian region.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Microbiota , Anciano , Bacterias/genética , Bacteroides/genética , Faecalibacterium/genética , Heces/microbiología , Microbioma Gastrointestinal/genética , Humanos , Kazajstán , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA