Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39063227

RESUMEN

Regulation of translation is a crucial step in gene expression. Developmental signals and environmental stimuli dynamically regulate translation via upstream small open reading frames (uORFs) and ribosome pausing. Recent studies have revealed many plant genes that are specifically regulated by uORF translation following changes in growth conditions, but ribosome-pausing events are less well understood. In this study, we performed ribosome profiling (Ribo-seq) of etiolated maize (Zea mays) seedlings exposed to light for different durations, revealing hundreds of genes specifically regulated at the translation level during the early period of light exposure. We identified over 400 ribosome-pausing events in the dark that were rapidly released after illumination. These results suggested that ribosome pausing negatively regulates translation from specific genes, a conclusion that was supported by a non-targeted proteomics analysis. Importantly, we identified a conserved nucleotide motif downstream of the pausing sites. Our results elucidate the role of ribosome pausing in the control of gene expression in plants; the identification of the cis-element at the pausing sites provides insight into the mechanisms behind translation regulation and potential targets for artificial control of plant translation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Sistemas de Lectura Abierta , Proteínas de Plantas , Biosíntesis de Proteínas , Ribosomas , Plantones , Zea mays , Zea mays/genética , Zea mays/metabolismo , Ribosomas/metabolismo , Plantones/genética , Plantones/metabolismo , Plantones/efectos de la radiación , Plantones/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sistemas de Lectura Abierta/genética , Luz , Oscuridad , Proteómica/métodos
2.
Int J Mol Sci ; 21(12)2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32560081

RESUMEN

RNA editing plays a key role in organelle gene expression. Little is known about how RNA editing factors influence soybean plant development. Here, we report the isolation and characterization of a soybean yl (yellow leaf) mutant. The yl plants showed decreased chlorophyll accumulation, lower PS II activity, an impaired net photosynthesis rate, and an altered chloroplast ultrastructure. Fine mapping of YL uncovered a point mutation in Glyma.20G187000, which encodes a chloroplast-localized protein homologous to Arabidopsis thaliana (Arabidopsis) ORRM1. YL is mainly expressed in trifoliate leaves, and its deficiency affects the editing of multiple chloroplast RNA sites, leading to inferior photosynthesis in soybean. Taken together, these results demonstrate the importance of the soybean YL protein in chloroplast RNA editing and photosynthesis.


Asunto(s)
Cloroplastos/genética , Glycine max/crecimiento & desarrollo , Mutación Puntual , Edición de ARN , Clorofila/metabolismo , Cloroplastos/metabolismo , Mapeo Cromosómico , Regulación de la Expresión Génica de las Plantas , Fotosíntesis , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Sitios de Carácter Cuantitativo , Análisis de Secuencia de ADN , Glycine max/genética , Glycine max/metabolismo
3.
Plant Physiol ; 178(4): 1631-1642, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30305372

RESUMEN

Tomato (Solanum lycopersicum) is a major vegetable fruit grown and consumed worldwide. Modern cultivated tomatoes are derived from their wild relative, Solanum pimpinellifolium, a short-day plant that originated from the Andean region of South America. The molecular underpinnings of the regional adaptation and expansion of domesticated tomato remain largely unclear. In this study, we examined flowering time in wild and cultivated tomatoes under both long-day and short-day conditions. Using quantitative trait locus mapping in a recombinant inbred line population, we identified SELF PRUNING 5G (SP5G) as a major locus influencing daylength adaptation in tomato. Genetic diversity analysis revealed that the genomic region harboring SP5G shows signatures of a domestication sweep. We found that a 52-bp sequence within the 3' untranslated region of SP5G is essential for the enhanced expression of this gene, leading to delayed flowering time in tomatoes through a promoter-enhancer interaction that occurs only under long-day conditions. We further demonstrate that the absence of the 52-bp sequence attenuates the promoter-enhancer interaction and reduces SP5G expression in cultivated tomatoes, making their flowering time insensitive to daylength. Our findings demonstrate that cis-regulatory variation at the enhancer region of the SP5G 3' untranslated region confers reduced photoperiodic response in cultivated tomatoes, uncovering a regulatory mechanism that could potentially be used to manipulate flowering time in tomato through novel biotechnological approaches.


Asunto(s)
Adaptación Biológica/genética , Elementos de Facilitación Genéticos , Proteínas de Plantas/genética , Regiones Promotoras Genéticas/genética , Solanum lycopersicum/fisiología , Regiones no Traducidas 3' , Productos Agrícolas/genética , Productos Agrícolas/fisiología , Domesticación , Flores/genética , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Variación Genética , Solanum lycopersicum/genética , Fotoperiodo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Sitios de Carácter Cuantitativo , Nicotiana/genética
4.
Front Plant Sci ; 12: 646359, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33968104

RESUMEN

As important electron carriers, ferredoxin (Fd) proteins play important roles in photosynthesis, and the assimilation of CO2, nitrate, sulfate, and other metabolites. In addition to the well-studied Fds, plant genome encodes two Fd-like protein members named FdC1 and FdC2, which have extension regions at the C-terminus of the 2Fe-2S cluster. Mutation or overexpression of FdC genes caused alterations in photosynthetic electron transfer rate in rice and Arabidopsis. Maize genome contains one copy of each FdC gene. However, the functions of these genes have not been reported. In this study, we identified the ZmFdC2 gene by forward genetics approach. Mutation of this gene causes impaired photosynthetic electron transport and collapsed chloroplasts. The mutant plant is seedling-lethal, indicating the indispensable function of ZmFdC2 gene in maize development. The ZmFdC2 gene is specifically expressed in photosynthetic tissues and induced by light treatment, and the encoded protein is localized on chloroplast, implying its specialized function in photosynthesis. Furthermore, ZmFdC2 expression was detected in both mesophyll cells and bundle sheath cells, the two cell types specialized for C4 and C3 photosynthesis pathways in maize. Epigenomic analyses showed that ZmFdC2 locus was enriched for active histone modifications. Our results demonstrate that ZmFdC2 is a key component of the photosynthesis pathway and is crucial for the development of maize.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA