Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Dis ; 108(5): 1157-1164, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38127630

RESUMEN

Huanglongbing (HLB) is a citrus infectious disease caused by 'Candidatus Liberibacter' spp. Recently, it has begun to spread rapidly worldwide, causing significant losses to the citrus industry. Early diagnosis of HLB relies on quantitative real-time PCR assays. However, the PCR inhibitors found in the nucleic acid extracted from plant materials pose challenges for PCR assays because they may result in false-negative results. Internal standard (IS) can be introduced to establish a single-tube duplex PCR for monitoring the influence of the PCR inhibitor, but it also brings the risk of false-negative results because the amplification of IS may compete with the target. To solve this problem, we proposed a mutation-enhanced single-tube duplex PCR (mSTD-PCR) containing IS with mutant-type primers. By introducing the 3'-terminal mutation in the primer of IS to weaken its amplification reaction and its inhibition of 'Candidatus Liberibacter asiaticus' (CLas) detection, the sensitivity and quantitative accuracy of CLas detection will not be affected by IS. In evaluating the sensitivity of CLas detection using simulation samples, the mSTD-PCR showed consistent sensitivity at 25 copies per test compared with the single-plex CLas assay. The detection result of 30 leaves and 30 root samples showed that the mSTD-PCR could recognize false-negative results caused by the PCR inhibitors and reduce workload by 48% compared with the single-plex CLas assay. Generally, the proposed mSTD-PCR provides a reliable, efficient, inhibitor-monitorable, quantitative screening method for accurately controlling HLB and a universal method for establishing a PCR assay for various pathogens.


Asunto(s)
Citrus , Enfermedades de las Plantas , Reacción en Cadena en Tiempo Real de la Polimerasa , Rhizobiaceae , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Enfermedades de las Plantas/microbiología , Citrus/microbiología , Rhizobiaceae/genética , Rhizobiaceae/aislamiento & purificación , Cartilla de ADN/genética , Sensibilidad y Especificidad , Mutación , ADN Bacteriano/genética , Liberibacter/genética
2.
Biosens Bioelectron ; 203: 114032, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35131697

RESUMEN

SARS-CoV-2 variants of concern (VOCs) contain several single-nucleotide variants (SNVs) at key sites in the receptor-binding region (RBD) that enhance infectivity and transmission, as well as cause immune escape, resulting in an aggravation of the coronavirus disease 2019 (COVID-19) pandemic. Emerging VOCs have sparked the need for a diagnostic method capable of simultaneously monitoring these SNVs. To date, no highly sensitive, efficient clinical tool exists to monitor SNVs simultaneously. Here, an encodable multiplex microsphere-phase amplification (MMPA) sensing platform that combines primer-coded microsphere technology with dual fluorescence decoding strategy to detect SARS-CoV-2 RNA and simultaneously identify 10 key SNVs in the RBD. MMPA limits the amplification refractory mutation system PCR (ARMS-PCR) reaction for specific target sequence to the surface of a microsphere with specific fluorescence coding. This effectively solves the problem of non-specific amplification among primers and probes in multiplex PCR. For signal detection, specific fluorescence codes inside microspheres are used to determine the corresponding relationship between the microspheres and the SNV sites, while the report probes hybridized with PCR products are used to detect the microsphere amplification intensity. The MMPA platform offers a lower SARS-CoV-2 RNA detection limit of 28 copies/reaction, the ability to detect a respiratory pathogen panel without cross-reactivity, and a SNV analysis accuracy level comparable to that of sequencing. Moreover, this super-multiple parallel SNVs detection method enables a timely updating of the panel of detected SNVs that accompanies changing VOCs, and presents a clinical availability that traditional sequencing methods do not.


Asunto(s)
Técnicas Biosensibles , COVID-19 , COVID-19/diagnóstico , Humanos , Microesferas , Reacción en Cadena de la Polimerasa Multiplex , Mutación , ARN Viral/genética , SARS-CoV-2/genética
3.
Anal Chim Acta ; 1167: 338599, 2021 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-34049623

RESUMEN

Convenient and accurate nucleic acid quantification (NAQ) is crucial to clinical diagnosis, forensic medicine, veterinary medicine and food analysis. However, traditional NAQ relies on the preparation of a laborious, time-consuming and expensive calibration curve, which would also propagate pipette errors through serially dilutions. Besides, traditional NAQ is run in different tubes, which introduces bias from random tube-to-tube variations and is unable to detect inhibitors from biological samples. To solve these problems, a single-tube quantitative PCR (stqPCR) technique is proposed which enables accurate quantification without the need for a calibration curve. In this method, an internal quantitative standard DNA (IQS-DNA) for quantification was screened out by co-amplification with the target DNA. Then the difference between the quantification cycle value (ΔCq) of the IQS-DNA and the target DNA was used for NAQ. The method permitted high accuracy quantification with reliable data for concentrations in plasmid, serum standard, and clinical samples being confirmed (R2 values of 0.9951, 0.9889, and 0.9727, slope values of 1.011, 1.028, and 0.9327, and intercept values of -0.06037, -0.1486, and 0.3325, respectively). Accurate NAQ could also be achieved by stqPCR even though inhibitors were present in a sample; however, in the case of using a commercial assay kit, satisfactory performance was only attained after the same sample was diluted some 32-fold. Moreover, integration of the present method into a microfluidic system could achieve super-fast NAQ in less than 30 min and achieve super-fast "sample in, quantitative answer out" testing in less than 40 min. Thus, the stqPCR method present here would promote the development of NAQ in the laboratory and on site.


Asunto(s)
ADN , Análisis de los Alimentos , Calibración , Reacción en Cadena en Tiempo Real de la Polimerasa
4.
Sheng Wu Gong Cheng Xue Bao ; 36(2): 171-179, 2020 Feb 25.
Artículo en Zh | MEDLINE | ID: mdl-32147990

RESUMEN

Multiple PCR (Multiplex polymerase chain reaction, MPCR) is a technology to simultaneously amplify multiple targets through a single reaction and to detect the amplification products by reliable detection means so as to realize the diagnosis of multiple targets. MPCR has been well studied for its high efficiency, high throughput and low cost. At present, MPCR has been widely used in scientific research, disease diagnosis and other fields. Here, we summarize the development and application of MPCR from amplification and detection, and discuss the advantages and existing problems of MPCR. We propose that separate the reaction mixture into droplets or combined MPCR with the capillary convective PCR is expect to further improve the amplification efficiency of the surface of the solid phase carrier, so as to provide reference for the development of multiple PCR with high amplification efficiency, good consistency, good stability and multiplex detection.


Asunto(s)
Reacción en Cadena de la Polimerasa Multiplex
5.
Clin Biochem ; 84: 73-78, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32592724

RESUMEN

OBJECTIVES: A novel coronavirus (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2) emerged in late 2019, causing an outbreak of pneumonia [coronavirus disease 2019 (COVID-19)] globally. Although the use of ready-made reaction mixes can enable more rapid PCR-based diagnosis of COVID-19, the need to transport and store these mixes at low temperatures presents challenges to already overburdened logistics networks. METHODS: Here, we present an optimized freeze-drying procedure that allows SARS-CoV-2 PCR mixes to be transported and stored at ambient temperatures, without loss of activity. Additive-supplemented PCR mixes were freeze-dried. The residual moisture of the freeze-dried PCR mixes was measured by Karl-Fischer titration. RESULTS: We found that the freeze-dried PCR mixes with ~1.2% residual moisture are optimal for storage, transport, and reconstitution. The sensitivity, specificity, and repeatability of the freeze-dried reagents were similar to those of freshly prepared, wet reagents. The freeze-dried mixes retained activity at room temperature (18 ~ 25 °C) for 28 days, and for 14 and 10 days when stored at 37 °C and 56 °C, respectively. CONCLUSION: The uptake of this approach will ease logistical challenges faced by transport networks and make more cold storage space available at diagnosis and hospital laboratories.


Asunto(s)
Betacoronavirus/genética , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/diagnóstico , Cartilla de ADN/química , ADN Viral/análisis , Neumonía Viral/diagnóstico , Reacción en Cadena de la Polimerasa/métodos , Betacoronavirus/aislamiento & purificación , COVID-19 , Prueba de COVID-19 , Infecciones por Coronavirus/virología , ADN Viral/genética , Liofilización , Humanos , Pandemias , Neumonía Viral/virología , SARS-CoV-2 , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA