Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
2.
Plant Physiol ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687890

RESUMEN

Seed germination is a critical checkpoint for plant growth under unfavorable environmental conditions. In Arabidopsis (Arabidopsis thaliana), the abscisic acid (ABA) and gibberellic acid (GA) signaling pathways play important roles in modulating seed germination. However, the molecular links between salinity stress and ABA/GA signaling are not well understood. Herein, we showed that the expression of DIVARICATA1 (DIV1), which encodes a MYB-like transcription factor, was induced by GA and repressed by ABA, salinity, and osmotic stress in germinating seeds. DIV1 positively regulated seed germination in response to salinity stress by directly regulating the expression of DELAY OF GERMINATION 1-LIKE 3 (DOGL3) and GA-STIMULATED ARABIDOPSIS 4 (GASA4) and indirectly regulating the expression of several germination-associated genes. Moreover, NUCLEAR FACTOR-YC9 (NF-YC9) directly repressed the expression of DIV1 in germinating seeds in response to salinity stress. These results help reveal the function of the NF-YC9-DIV1 module and provide insights into the regulation of ABA and GA signaling in response to salinity stress during seed germination in Arabidopsis.

3.
PLoS Genet ; 18(9): e1010425, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36149892

RESUMEN

Transcriptional elongation is a universal and critical step during gene expression. The super elongation complex (SEC) regulates the rapid transcriptional induction by mobilizing paused RNA polymerase II (Pol II). Dysregulation of SEC is closely associated with human diseases. However, the physiological role of SEC during development and homeostasis remains largely unexplored. Here we studied the function of SEC in adipogenesis by manipulating an essential scaffold protein AF4/FMR2 family member 4 (AFF4), which assembles and stabilizes SEC. Knockdown of AFF4 in human mesenchymal stem cells (hMSCs) and mouse 3T3-L1 preadipocytes inhibits cellular adipogenic differentiation. Overexpression of AFF4 enhances adipogenesis and ectopic adipose tissue formation. We further generate Fabp4-cre driven adipose-specific Aff4 knockout mice and find that AFF4 deficiency impedes adipocyte development and white fat depot formation. Mechanistically, we discover AFF4 regulates autophagy during adipogenesis. AFF4 directly binds to autophagy-related protein ATG5 and ATG16L1, and promotes their transcription. Depleting ATG5 or ATG16L1 abrogates adipogenesis in AFF4-overepressing cells, while overexpression of ATG5 and ATG16L1 rescues the impaired adipogenesis in Aff4-knockout cells. Collectively, our results unveil the functional importance of AFF4 in regulating autophagy and adipogenic differentiation, which broaden our understanding of the transcriptional regulation of adipogenesis.


Asunto(s)
Adipogénesis , Factores de Elongación Transcripcional/metabolismo , Adipogénesis/genética , Animales , Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Diferenciación Celular/genética , Humanos , Ratones , ARN Polimerasa II , Factores de Transcripción , Factores de Elongación Transcripcional/genética
4.
J Cell Mol Med ; 28(12): e18451, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38898783

RESUMEN

Exosomes derived from bone marrow-derived mesenchymal stem cells (BMSCs) can alleviate the symptoms of pelvic floor dysfunction (PFD) in rats. However, the potential therapeutical effects of exosomes derived from BMSCs treated with tumour necrosis factor (TNF)-α on the symptoms of PFD in rats are unknown. Exosomes extracted from BMSCs treated with or without TNF-α were applied to treat PFD rats. Our findings revealed a significant elevation in interleukin (IL)-6 and TNF-α, and matrix metalloproteinase-2 (MMP2) levels in the vaginal wall tissues of patients with pelvic organ prolapse (POP) compared with the control group. Daily administration of exosomes derived from BMSCs, treated either with or without TNF-α (referred to as Exo and TNF-Exo), resulted in increased void volume and bladder void pressure, along with reduced peak bladder pressure and leak point pressure in PFD rats. Notably, TNF-Exo treatment demonstrated superior efficacy in restoring void volume, bladder void pressure and the mentioned parameters compared with Exo treatment. Importantly, TNF-Exo exhibited greater potency than Exo in restoring the levels of multiple proteins (Elastin, Collagen I, Collagen III, IL-6, TNF-α and MMP2) in the anterior vaginal walls of PFD rats. The application of exosomes derived from TNF-α-treated BMSCs holds promise as a novel therapeutic approach for treating PFD.


Asunto(s)
Exosomas , Metaloproteinasa 2 de la Matriz , Células Madre Mesenquimatosas , Prolapso de Órgano Pélvico , Factor de Necrosis Tumoral alfa , Animales , Exosomas/metabolismo , Exosomas/trasplante , Células Madre Mesenquimatosas/metabolismo , Femenino , Factor de Necrosis Tumoral alfa/metabolismo , Ratas , Humanos , Prolapso de Órgano Pélvico/terapia , Prolapso de Órgano Pélvico/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Ratas Sprague-Dawley , Interleucina-6/metabolismo , Diafragma Pélvico , Modelos Animales de Enfermedad , Células de la Médula Ósea/metabolismo , Vagina/patología , Trasplante de Células Madre Mesenquimatosas/métodos , Trastornos del Suelo Pélvico/terapia , Persona de Mediana Edad
5.
Artículo en Inglés | MEDLINE | ID: mdl-38573593

RESUMEN

Neointimal hyperplasia causes the failure of coronary artery bypass grafting (CABG). Our previous studies have found that endothelial dysfunction is one candidate for triggering neointimal hyperplasia, but which factors are involved in this process is unclear. Glutathione S-transferase α4 (GSTA4) play an important role in metabolizing 4-hydroxynonenal (4-HNE), a highly reactive lipid peroxidation product, which causes endothelial dysfunction or death. Here, we investigated the role of GSTA4 in neointima formation after arteriovenous grafts (AVGs) with or without high-fat diet (HFD). Compared with normal diet (ND), HFD caused endothelial dysfunction and increased neointima formation, concomitantly accompanied by downregulated expression of GSTA4 at the mRNA and protein levels. In vitro, overexpression of GSTA4 attenuated 4-HNE-induced endothelial dysfunction and knockdown of GSTA4 aggravated endothelial dysfunction. Furthermore, silencing GSTA4 expression facilitated the activation of 4-HNE induced endoplasmic reticulum stress (ERS) and inhibition of ERS pathway alleviated 4-HNE-induced endothelial dysfunction. Additionally, compared with wild-type (WT) mice, mice with knockout of endothelial-specific GSTA4 (GSTA4 EC KO) exhibited exacerbated vascular endothelial dysfunction and increased neointima formation caused by HFD. Together, these results demonstrate the critical role of GSTA4 in protecting the function of endothelial cells and in alleviating hyperlipidemia-induced vascular neointimal hyperplasia in arteriovenous grafts.

6.
J Nanobiotechnology ; 22(1): 62, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360615

RESUMEN

BACKGROUND: A large number of Fusobacterium nucleatum (Fn) are present in colorectal cancer (CRC) tissues of patients who relapse after chemotherapy, and Fn has been reported to promote oxaliplatin and 5-FU chemoresistance in CRC. Pathogens such as bacteria and parasites stimulate exosome production in tumor cells, and the regulatory mechanism of exosomal circRNA in the transmission of oxaliplatin and 5-FU chemotherapy resistance in Fn-infected CRC remains unclear. METHODS: Hsa_circ_0004085 was screened by second-generation sequencing of CRC tissues. The correlation between hsa_circ_0004085 and patient clinical response to oxaliplatin/5-FU was analyzed. Exosome tracing experiments and live imaging systems were used to test the effect of Fn infection in CRC on the distribution of hsa_circ_0004085. Colony formation, ER tracking analysis and immunofluorescence were carried out to verify the regulatory effect of exosomes produced by Fn-infected CRC cells on chemotherapeutic resistance and ER stress. RNA pulldown, LC-MS/MS analysis and RIP were used to explore the regulatory mechanism of downstream target genes by hsa_circ_0004085. RESULTS: First, we screened out hsa_circ_0004085 with abnormally high expression in CRC clinical samples infected with Fn and found that patients with high expression of hsa_circ_0004085 in plasma had a poor clinical response to oxaliplatin/5-FU. Subsequently, the circular structure of hsa_circ_0004085 was identified. Fn infection promoted hsa_circ_0004085 formation by hnRNP L and packaged hsa_circ_0004085 into exosomes by hnRNP A1. Exosomes produced by Fn-infected CRC cells transferred hsa_circ_0004085 between cells and delivered oxaliplatin/5-FU resistance to recipient cells by relieving ER stress. Hsa_circ_0004085 enhanced the stability of GRP78 mRNA by binding to RRBP1 and promoted the nuclear translocation of ATF6p50 to relieve ER stress. CONCLUSIONS: Plasma levels of hsa_circ_0004085 are increased in colon cancer patients with intracellular Fn and are associated with a poor response to oxaliplatin/5-FU. Fn infection promoted hsa_circ_0004085 formation by hnRNP L and packaged hsa_circ_0004085 into exosomes by hnRNP A1. Exosomes secreted by Fn-infected CRC cells deliver hsa_circ_0004085 between cells. Hsa_circ_0004085 relieves ER stress in recipient cells by regulating GRP78 and ATF6p50, thereby delivering resistance to oxaliplatin and 5-FU.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Exosomas , Ribonucleoproteína Heterogénea-Nuclear Grupo L , MicroARNs , Humanos , Oxaliplatino/farmacología , Oxaliplatino/uso terapéutico , Oxaliplatino/metabolismo , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Neoplasias Colorrectales/metabolismo , Exosomas/metabolismo , Cromatografía Liquida , Chaperón BiP del Retículo Endoplásmico , Ribonucleoproteína Heterogénea-Nuclear Grupo L/metabolismo , Espectrometría de Masas en Tándem , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , MicroARNs/metabolismo , Proliferación Celular
7.
Nucleic Acids Res ; 50(10): 5757-5771, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35639925

RESUMEN

Synechococcus elongatus, formerly known as Anacystis nidulans, is a representative species of cyanobacteria. It is also a model organism for the study of photoreactivation, which can be fully photoreactivated even after receiving high UV doses. However, for a long time, only one photolyase was found in S. elongatus that is only able to photorepair UV induced cyclobutane pyrimidine dimers (CPDs) in DNA. Here, we characterize another photolyase in S. elongatus, which belongs to iron-sulfur bacterial cryptochromes and photolyases (FeS-BCP), a subtype of prokaryotic 6-4 photolyases. This photolyase was named SePhrB that could efficiently photorepair 6-4 photoproducts in DNA. Chemical analyses revealed that SePhrB contains a catalytic FAD cofactor and an iron-sulfur cluster. All of previously reported FeS-BCPs contain 6,7-dimethyl-8-ribityllumazine (DMRL) as their antenna chromophores. Here, we first demonstrated that SePhrB possesses 7,8-didemethyl-8-hydroxy-5-deazariboflavin (8-HDF) as an antenna chromophore. Nevertheless, SePhrB could be photoreduced without external electron donors. After being photoreduced, the reduced FAD cofactor in SePhrB was extremely stable against air oxidation. These results suggest that FeS-BCPs are more diverse than expected which deserve further investigation.


Asunto(s)
Desoxirribodipirimidina Fotoliasa , ADN/química , Reparación del ADN , Desoxirribodipirimidina Fotoliasa/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Hierro , Dímeros de Pirimidina/química , Azufre , Synechococcus , Rayos Ultravioleta
8.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 19-23, 2024 Jan 20.
Artículo en Zh | MEDLINE | ID: mdl-38322526

RESUMEN

The cellular response to mechanical stimuli depends largely on the structure of the cell itself and the abundance of intracellular cytomechanical proteins also plays a key role in the response to the stimulation of external mechanical signals. Liquid-liquid phase separation (LLPS) is the process by which proteins or protein-RNA complexes spontaneously separate and form two distinct "phases", ie, a low-concentration phase coexisting with a high-concentration phase. According to published findings, membrane-free organelles form and maintain their structures and regulate their internal biochemical activities through LLPS. LLPS, a novel mechanism for intracellular regulation of the biochemical reactions of biomacromolecules, plays a crucial role in modulating the responses of cytomechanical proteins. LLPS leads to the formation of highly concentrated liquid-phase condensates through multivalent interactions between biomacromolecules, thereby regulating a series of intracellular life activities. It has been reported that a variety of cytomechanical proteins respond to external mechanical signals through LLPS, which in turn affects biological behaviors such as cell growth, proliferation, spreading, migration, and apoptosis. Herein, we introduced the mechanisms of cytomechanics and LLPS. In addition, we presented the latest findings on cytomechanical protein phase separation, covering such issues as the regulation of focal adhesion maturation and mechanical signal transduction by LIM domain-containing protein 1 (LIMD1) phase separation, the regulation of intercellular tight junctions by zonula occludens (ZO) phase separation, and the regulation of cell proliferation and apoptosis by cytomechanical protein phase separation of the Hippo signaling pathway. The proposition of LLPS provides an explanation for the formation mechanism of intracellular membraneless organelles and supplies new approaches to understanding the biological functions of intracellular physiology or pathology. However, the molecular mechanisms by which LLPS drives focal adhesions and cell-edge dynamics are still not fully understood. It is not clear whether LLPS under in vitro conditions can occur under physiological conditions of organisms. There are still difficulties to be overcome in using LLPS to explain the interactions of multiple intracellular molecules. Researchers should pursue answers to these questions in the future.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Separación de Fases , Orgánulos/química , Orgánulos/metabolismo
9.
J Cell Physiol ; 238(3): 582-596, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36791253

RESUMEN

Endoplasmic reticulum (ER) stress is involved in skeletal muscle atrophy in various conditions, but the role of ER stress in sepsis-induced muscle atrophy is not well understood. In this study, we conducted experiments in wild-type (WT) mice and C/EBP homologous protein knockout (CHOP KO) mice to explore the role and mechanism of ER stress in sepsis-induced muscle atrophy. Cecal ligation and puncture (CLP) was used to establish a mouse model of sepsis. In WT mice, the body weight, muscle mass, and cross-sectional area of muscle fibers in CLP group both decreased significantly compared with sham group, which revealed that sepsis-induced dramatic muscle atrophy. Additionally, sepsis activated the ubiquitin-proteasome system (UPS), accompanied by the activation of ER stress. In vitro, inhibition of ER stress suppressed the activity of E3 ubiquitin ligases and alleviated the myotube atrophy. In vivo, CHOP KO also reduced the expression of E3 ubiquitin ligases and UPS-mediated protein degradation, and significantly attenuated sepsis-induced muscle atrophy. Deletion of CHOP also decreased the phosphorylation of signal transducer and activator of transcription 3 (STAT3) and Smad3, and inhibition of STAT3 and Smad3 partly reduced proteolysis caused by ER stress in vitro. These findings confirm that ER stress activates UPS-mediated proteolysis and promotes sepsis-induced muscle atrophy, which is partly achieved by activating STAT3 and Smad3.


Asunto(s)
Estrés del Retículo Endoplásmico , Atrofia Muscular , Factor de Transcripción STAT3 , Sepsis , Proteína smad3 , Animales , Ratones , Ratones Noqueados , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/etiología , Atrofia Muscular/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Sepsis/complicaciones , Sepsis/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteína smad3/antagonistas & inhibidores , Proteína smad3/metabolismo , Modelos Animales de Enfermedad , Ubiquitina/metabolismo , Proteolisis , Fosforilación
10.
Cell Commun Signal ; 21(1): 55, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36915160

RESUMEN

Fibroblast growth factor 19 (FGF19) is recognized to play an essential role in cartilage development and physiology, and has emerged as a potential therapeutic target for skeletal metabolic diseases. However, FGF19-mediated cellular behavior in chondrocytes remains a big challenge. In the current study, we aimed to investigate the role of FGF19 on chondrocytes by characterizing mitochondrial biogenesis and fission-fusion dynamic equilibrium and exploring the underlying mechanism. We first found that FGF19 enhanced mitochondrial biogenesis in chondrocytes with the help of ß Klotho (KLB), a vital accessory protein for assisting the binding of FGF19 to its receptor, and the enhanced biogenesis accompanied with a fusion of mitochondria, reflecting in the elongation of individual mitochondria and the up-regulation of mitochondrial fusion proteins. We then revealed that FGF19-mediated mitochondrial biogenesis and fusion required the binding of FGF19 to the membrane receptor, FGFR4, and the activation of AMP-activated protein kinase alpha (AMPKα)/peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α)/sirtuin 1 (SIRT1) axis. Finally, we demonstrated that FGF19-mediated mitochondrial biogenesis and fusion was mainly dependent on the activation of p-p38 signaling. Inhibition of p38 signaling largely reduced the high expression of AMPKα/PGC-1α/SIRT1 axis, decreased the up-regulation of mitochondrial fusion proteins and impaired the enhancement of mitochondrial network morphology in chondrocytes induced by FGF19. Taking together, our results indicate that FGF19 could increase mitochondrial biogenesis and fusion via AMPKα-p38/MAPK signaling, which enlarge the understanding of FGF19 on chondrocyte metabolism. Video Abstract.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Factores de Transcripción , Factores de Transcripción/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Condrocitos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Biogénesis de Organelos , Sirtuina 1/metabolismo
11.
BMC Pregnancy Childbirth ; 23(1): 114, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36788485

RESUMEN

BACKGROUND: The use of cervical strain elastography for nulliparous women during late-term pregnancy remains unclear. This study assesses the predictive value of late-term cervical strain elastography for successful induction of labor (IOL) in nulliparous women. METHODS: This single-centered, prospective study included 86 patients undergoing IOL between January 2020 and March 2022. Univariate and multivariate analyses were conducted to identify predictive factors for successful IOL. The predictive values were assessed using the area under receiver operating characteristic (ROC) curves. RESULTS: IOL was successful in 58 patients. The hardness ratio and cervical length were significantly associated with successful late-term IOL in nulliparous women. The predictive value of the combination of hardness ratio and cervical length was higher than that of cervical length alone. CONCLUSIONS: The hardness ratio and cervical length assessed by cervical strain elastography during late-term pregnancy are predictors of the success of IOL in nulliparous women. The predictive value of the combination of hardness ratio and cervical length was higher than that of cervical length alone.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Embarazo , Humanos , Femenino , Estudios Prospectivos , Valor Predictivo de las Pruebas , Trabajo de Parto Inducido , Paridad , Curva ROC , Cuello del Útero/diagnóstico por imagen
12.
BMC Nephrol ; 24(1): 280, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37740193

RESUMEN

Rituximab (RTX) and cyclophosphamide (CYC) based treatments are both recommended as first-line therapies in idiopathic membranous nephropathy (IMN) by KDIGO 2021 guideline. However, the efficacy of RTX vs. CYC-based treatments in IMN is still controversial. We performed this systemic review and meta-analysis registered in PROSPERO (CRD 42,022,355,717) by pooling data from randomized controlled trials or cohort studies in IMN patients using the EMBASE, PubMed, and Cochrane libraries (till Orc 1, 2022). The primary outcomes were the complete remission (CR) rate + partial remission (PR) rate. CR rate, immunologic response rate, relapse rate, and the risk of serious adverse events (SAE) were secondary outcomes. Eight studies involving 600 adult patients with IMN were included with a median follow-up duration of 12 to 60 months. RTX induced a similar overall remission rate compared with CYC (RR 0.88, 95% CI: 0.71, 1.09, P = 0.23). At the follow-up time of 6 months, RTX was associated with a lower CR + PR rate compared with CYC (RR 0.67, 95% CI: 0.52, 0.88, P = 0.003). Moreover, RTX might be less effective in inducing CR + PR than CYC treatment in IMN patients with high antiPLA2R antibody levels (RR 0.67, 95% CI: 0.48, 0.94, P = 0.02). The occurrences of CRs, relapse rates, immunologic response rates, and SAE were not significantly different between RTX and CYC, respectively. In conclusion, although the long-term efficacy and safety of CYC compared to RTX were comparable, CYC might respond faster and be more advantageous in IMN patients with high antiPLA2R antibody titers.


Asunto(s)
Glomerulonefritis Membranosa , Adulto , Humanos , Glomerulonefritis Membranosa/tratamiento farmacológico , Rituximab/uso terapéutico , Ciclofosfamida/uso terapéutico , Pacientes
13.
Nucleic Acids Res ; 49(15): 8974-8986, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34329468

RESUMEN

Cytosine base editor (CBE) enables targeted C-to-T conversions at single base-pair resolution and thus has potential therapeutic applications in humans. However, the low efficiency of the system limits practical use of this approach. We reported a high-throughput human cells-based reporter system that can be harnessed for quickly measuring editing activity of CBE. Screening of 1813 small-molecule compounds resulted in the identification of Ricolinostat (an HDAC6 inhibitor) that can enhance the efficiency of BE3 in human cells (2.45- to 9.21-fold improvement). Nexturastat A, another HDAC6 inhibitor, could also increase BE3-mediated gene editing by 2.18- to 9.95-fold. Ricolinostat and Nexturastat A also boost base editing activity of the other CBE variants (BE4max, YE1-BE4max, evoAPOBEC1-BE4max and SpRY-CBE4max, up to 8.32-fold). Meanwhile, combined application of BE3 and Ricolinostat led to >3-fold higher efficiency of correcting a pathogenic mutation in ABCA4 gene related to Stargardt disease in human cells. Moreover, we demonstrated that our strategy could be applied for efficient generation of mouse models through direct zygote injection and base editing in primary human T cells. Our study provides a new strategy to improve the activity and specificity of CBE in human cells. Ricolinostat and Nexturastat A augment the effectiveness and applicability of CBE.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Sistemas CRISPR-Cas/genética , Citosina/metabolismo , Histona Desacetilasa 6/antagonistas & inhibidores , Enfermedad de Stargardt/genética , Animales , Edición Génica/tendencias , Células HEK293 , Histona Desacetilasa 6/genética , Humanos , Ácidos Hidroxámicos/farmacología , Ratones , Mutación/efectos de los fármacos , Compuestos de Fenilurea/farmacología , Pirimidinas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Enfermedad de Stargardt/tratamiento farmacológico , Enfermedad de Stargardt/patología , Linfocitos T/efectos de los fármacos , Cigoto/efectos de los fármacos
14.
Acta Biochim Biophys Sin (Shanghai) ; 55(3): 426-437, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36825442

RESUMEN

Cyclic di-adenosine monophosphate (c-di-AMP) is a bacterial second messenger that can be recognized by infected host cells and activate the immunoinflammatory response. The purpose of this study is to demonstrate the effect of c-di-AMP on the differentiation of human periodontal ligament stem cells (hPDLSCs) and its underlying mechanisms. In the present study, we find that the gingival crevicular fluid (GCF) of patients with chronic periodontitis has a higher expression level of c-di-AMP than that of healthy people. In vitro, c-di-AMP influences the differentiation of hPDLSCs by upregulating Toll-like receptors (TLRs); specifically, it inhibits osteogenic differentiation by activating NF-κB and ERK/MAPK and promotes adipogenic differentiation through the NF-κB and p38/MAPK signaling pathways. Inhibitors of TLRs or activated pathways reduce the changes induced by c-di-AMP. Our results establish the potential correlation among bacterial c-di-AMP, periodontal tissue homeostasis and chronic periodontitis pathogenesis.


Asunto(s)
Periodontitis Crónica , FN-kappa B , Humanos , FN-kappa B/metabolismo , Ligamento Periodontal/metabolismo , Osteogénesis , Periodontitis Crónica/metabolismo , Diferenciación Celular , Células Madre/metabolismo , Receptores Toll-Like/metabolismo , Adenosina Monofosfato/metabolismo , Células Cultivadas
15.
J Acoust Soc Am ; 154(1): 279-294, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37449785

RESUMEN

Recently, full-waveform inversion (FWI) has become a promising tool for ultrasound computed tomography (USCT). However, as a computationally intensive technique, FWI suffers from computational burden, especially in conventional time-domain full-waveform inversion (TDFWI). On the contrary, frequency-domain full-waveform inversion (FDFWI) provides a relatively high computational efficiency as the propagation of discrete frequencies is much cheaper than full time-domain modeling. FDFWI has already been applied in soft tissue imaging, such as breast, but for the musculoskeletal model with high impedance contrast between hard and soft tissues, there is still a lack of an effective source estimation method. In this paper, a water-referenced data calibration method is proposed to address the source estimation challenge in the presence of bones, which achieves consistency between the measured and simulated data before the FDFWI procedure. To avoid the cycle-skipping local minimum effect and facilitate the algorithm convergence, a starting frequency criterion for musculoskeletal FDFWI is further proposed. The feasibility of the proposed method is demonstrated by numerical studies on retrieving the anatomies of the leg models and different musculoskeletal lesions. The study extends the advanced FDFWI method to the musculoskeletal system and provides an alternative solution for musculoskeletal USCT imaging with high computational efficiency.


Asunto(s)
Algoritmos , Tomografía Computarizada por Rayos X , Tomografía Computarizada por Rayos X/métodos , Ultrasonografía/métodos , Huesos
16.
Molecules ; 28(16)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37630344

RESUMEN

Coffee fermentation is crucial for flavor and aroma, as microorganisms degrade mucilage and produce metabolites. This study aimed to provide a basis for understanding the impact of microorganisms on Coffea arabica from Yunnan, China, during washed processing. The microbial community structure and differentially changed metabolites (DCMs) of C. arabica beans during washed processing were analyzed. The results indicated that the top five predominant microorganisms at the genera level were Achromobacter, Tatumella, Weissella, Streptococcus, and Trichocoleus for bacteria and Cystofilobasidium, Hanseniaspora, Lachancea, Wickerhamomyces, and Aspergillus for fungi. Meanwhile, the relative content of 115 DCMs in 36 h samples decreased significantly, compared to non-fermentation coffee samples (VIP > 1, p < 0.05, FC < 0.65), and the relative content of 28 DCMs increased significantly (VIP > 1, p < 0.05, FC > 1.5). Furthermore, 17 DCMs showed a strong positive correlation with microorganisms, and 5 DCMs had a strong negative correlation (p < 0.05, |r| > 0.6). Therefore, the interaction and metabolic function of microbiota play a key role in the formation of coffee flavor, and these results help in clarifying the fermentation mechanisms of C. arabica and in controlling and improving the quality of coffee flavor.


Asunto(s)
Coffea , Microbiota , Saccharomycetales , Café , China , Fermentación
17.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(3): 679-684, 2023 May.
Artículo en Zh | MEDLINE | ID: mdl-37248605

RESUMEN

Inflammasomes are important components of the innate immune system. They are assembled by cytoplasmic pattern recognition receptors and play a critical role in the pathogenesis and progression of various inflammatory diseases through regulating the release and activation of inflammatory cytokines and inducing cell prytosis. NOD-like receptor family pyrin domain containing protein 3 (NLRP3) inflammasome has been widely studied and has been shown to be closely associated with cardiovascular diseases and metabolic disorders. Bone and joint diseases, such as osteoarthritis and rheumatoid arthritis show high prevalence worldwide and can cause bone and cartilage damage, pain, and dysfunction, adversely affecting the patients' quality of life. The reported findings of some studies indicate that the pathogenesis of various bone and articular diseases is associated with NLRP3 inflammasome. Small molecule antagonists targeting NLRP3 inflammasome have shown considerable therapeutic potentials, but their clinical application still needs further exploration. Herein, we reviewed the composition and function of NLRP3 inflammasome and its association with bone and articular diseases.


Asunto(s)
Artritis Reumatoide , Inflamasomas , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas NLR , Dominio Pirina , Calidad de Vida
18.
J Biol Chem ; 296: 100394, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33567342

RESUMEN

Clustered regularly interspaced short palindromic repeat-Cas12a has been harnessed to manipulate the human genome; however, low cleavage efficiency and stringent protospacer adjacent motif hinder the use of Cas12a-based therapy and applications. Here, we have described a directional evolving and screening system in human cells to identify novel FnCas12a variants with high activity. By using this system, we identified IV-79 (enhanced activity FnCas12a, eaFnCas12a), which possessed higher DNA cleavage activity than WT FnCas12a. Furthermore, to widen the target selection spectrum, eaFnCas12a was engineered through site-directed mutagenesis. eaFnCas12a and one engineered variant (eaFnCas12a-RR), used for correcting human RS1 mutation responsible for X-linked retinoschisis, had a 3.28- to 4.04-fold improved activity compared with WT. Collectively, eaFnCas12a and its engineered variants can be used for genome-editing applications that requires high activity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Endodesoxirribonucleasas/metabolismo , Proteínas del Ojo/genética , Francisella/enzimología , Mutación , Retinosquisis/genética , Proteínas Bacterianas/genética , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , Células Cultivadas , Endodesoxirribonucleasas/genética , Evolución Molecular , Francisella/genética , Francisella/aislamiento & purificación , Edición Génica/métodos , Humanos , Ingeniería de Proteínas/métodos , Retinosquisis/metabolismo , Retinosquisis/patología , Selección Genética , Relación Estructura-Actividad
19.
EMBO J ; 37(20)2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30181118

RESUMEN

The osteogenic differentiation of mesenchymal stem cells (MSCs) is governed by multiple mechanisms. Growing evidence indicates that ubiquitin-dependent protein degradation is critical for the differentiation of MSCs and bone formation; however, the function of ubiquitin-specific proteases, the largest subfamily of deubiquitylases, remains unclear. Here, we identify USP34 as a previously unknown regulator of osteogenesis. The expression of USP34 in human MSCs increases after osteogenic induction while depletion of USP34 inhibits osteogenic differentiation. Conditional knockout of Usp34 from MSCs or pre-osteoblasts leads to low bone mass in mice. Deletion of Usp34 also blunts BMP2-induced responses and impairs bone regeneration. Mechanically, we demonstrate that USP34 stabilizes both Smad1 and RUNX2 and that depletion of Smurf1 restores the osteogenic potential of Usp34-deficient MSCs in vitro Taken together, our data indicate that USP34 is required for osteogenic differentiation and bone formation.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Osteogénesis , Transducción de Señal , Proteasas Ubiquitina-Específicas/metabolismo , Animales , Proteína Morfogenética Ósea 2/genética , Regeneración Ósea/genética , Técnicas de Silenciamiento del Gen , Humanos , Células Madre Mesenquimatosas/citología , Ratones , Ratones Noqueados , Osteoblastos/citología , Osteoblastos/metabolismo , Proteasas Ubiquitina-Específicas/genética
20.
Cell Tissue Res ; 388(1): 181-194, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35091806

RESUMEN

Preeclampsia (PE) affects 3 to 5% of pregnant women worldwide and is associated with fetal and maternal morbidity and mortality. Although a complete understanding of PE remains elusive, it has been widely accepted that a dysfunction of the placenta plays a key role in the pathogenesis of PE. In this study, we investigated the role of excessive placental autophagy during PE pathogenesis and explored whether esomeprazole ameliorates PE by inhibiting the autophagy in the placenta. The PE cellular model was established by treating the cells' L-NAME and hypoxia. The PE mice model was established by L-NAME administration and was confirmed by the increased systolic blood pressure (SBP) and urinary protein detected. The autophagy and key proteins were detected in human placental tissue, in cells, and in the mice model by Western blot and immunofluorescence staining. Results showed that excessive autophagy could be detected in human PE placental tissue, in the PE cellular model, and in the PE mice model. Hypoxia induces autophagy by activating AMPKα and inhibiting mTOR in vivo and in vitro. Esomeprazole inhibits L-NAME-induced autophagy in mice by inhibiting AMPKα and activating mTOR. In conclusion, this study demonstrates that the excessive autophagy induced by the SIRT1/AMPKα-mTOR pathway plays a significant role in the pathogenesis of PE. However, esomeprazole treatment inhibits AMPKα but activates mTOR, resulting in the inhibition of autophagy in the placenta and, therefore, mitigates PE symptoms.


Asunto(s)
Esomeprazol , Preeclampsia , Animales , Autofagia , Esomeprazol/efectos adversos , Esomeprazol/metabolismo , Femenino , Humanos , Hipoxia/metabolismo , Ratones , Placenta/metabolismo , Preeclampsia/tratamiento farmacológico , Preeclampsia/metabolismo , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA