RESUMEN
There is an urgent need for vaccines against coronavirus disease 2019 (COVID-19) because of the ongoing SARS-CoV-2 pandemic. Among all approaches, a messenger RNA (mRNA)-based vaccine has emerged as a rapid and versatile platform to quickly respond to this challenge. Here, we developed a lipid nanoparticle-encapsulated mRNA (mRNA-LNP) encoding the receptor binding domain (RBD) of SARS-CoV-2 as a vaccine candidate (called ARCoV). Intramuscular immunization of ARCoV mRNA-LNP elicited robust neutralizing antibodies against SARS-CoV-2 as well as a Th1-biased cellular response in mice and non-human primates. Two doses of ARCoV immunization in mice conferred complete protection against the challenge of a SARS-CoV-2 mouse-adapted strain. Additionally, ARCoV is manufactured as a liquid formulation and can be stored at room temperature for at least 1 week. ARCoV is currently being evaluated in phase 1 clinical trials.
Asunto(s)
ARN Mensajero/genética , ARN Viral/genética , Vacunas Sintéticas/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Sitios de Unión , Vacunas contra la COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Femenino , Células HEK293 , Células HeLa , Humanos , Inmunogenicidad Vacunal , Inyecciones Intramusculares , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos ICR , Nanopartículas/química , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células TH1/inmunología , Potencia de la Vacuna , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Células Vero , Vacunas Virales/administración & dosificación , Vacunas Virales/genéticaRESUMEN
BACKGROUND: Cognitive dysfunction is one of the common symptoms in patients with major depressive disorder (MDD). Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) have been studied separately in the treatment of cognitive dysfunction in MDD patients. We aimed to investigate the effectiveness and safety of rTMS combined with tDCS as a new therapy to improve neurocognitive impairment in MDD patients. METHODS: In this brief 2-week, double-blind, randomized, and sham-controlled trial, a total of 550 patients were screened, and 240 MDD inpatients were randomized into four groups (active rTMS + active tDCS, active rTMS + sham tDCS, sham rTMS + active tDCS, sham rTMS + sham tDCS). Finally, 203 patients completed the study and received 10 treatment sessions over a 2-week period. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) was performed to assess patients' cognitive function at baseline and week 2. Also, we applied the 24-item Hamilton Depression Rating Scale (HDRS-24) to assess patients' depressive symptoms at baseline and week 2. RESULTS: After 10 sessions of treatment, the rTMS combined with the tDCS group showed more significant improvements in the RBANS total score, immediate memory, and visuospatial/constructional index score (all p < 0.05). Moreover, post hoc tests revealed a significant increase in the RBANS total score and Visuospatial/Constructional in the combined treatment group compared to the other three groups but in the immediate memory, the combined treatment group only showed a better improvement than the sham group. The results also showed the RBANS total score increased significantly higher in the active rTMS group compared with the sham group. However, rTMS or tDCS alone was not superior to the sham group in terms of other cognitive performance. In addition, the rTMS combined with the tDCS group showed a greater reduction in HDRS-24 total score and a better depression response rate than the other three groups. CONCLUSIONS: rTMS combined with tDCS treatment is more effective than any single intervention in treating cognitive dysfunction and depressive symptoms in MDD patients. TRIAL REGISTRATION: Chinese Clinical Trial Registry (ChiCTR2100052122).
Asunto(s)
Cognición , Trastorno Depresivo Mayor , Estimulación Transcraneal de Corriente Directa , Estimulación Magnética Transcraneal , Humanos , Trastorno Depresivo Mayor/terapia , Masculino , Femenino , Estimulación Transcraneal de Corriente Directa/métodos , Método Doble Ciego , Adulto , Estimulación Magnética Transcraneal/métodos , Persona de Mediana Edad , Cognición/fisiología , Resultado del Tratamiento , Terapia Combinada , Adulto JovenRESUMEN
Complex temporal molecular signals play a pivotal role in the intricate biological pathways of living organisms, and cells exhibit the ability to transmit and receive information by intricately managing the temporal dynamics of their signaling molecules. Although biomimetic molecular networks are successfully engineered outside of cells, the capacity to precisely manipulate temporal behaviors remains limited. In this study, the catalysis activity of isothermal DNA polymerase (DNAP) through combined use of molecular dynamics simulation analysis and fluorescence assays is first characterized. DNAP-driven delay in signal strand release ranged from 100 to 102 min, which is achieved through new strategies including the introduction of primer overhangs, utilization of inhibitory reagents, and alteration of DNA template lengths. The results provide a deeper insight into the underlying mechanisms of temporal control DNAP-mediated primer extension and DNA strand displacement reactions. Then, the regulated DNAP catalysis reactions are applied in temporal modulation of downstream DNA-involved reactions, the establishment of dynamic molecular signals, and the generation of barcodes for multiplexed detection of target genes. The utility of DNAP-based signal delay as a dynamic DNA nanotechnology extends beyond theoretical concepts and achieves practical applications in the fields of cell-free synthetic biology and bionic sensing.
Asunto(s)
Biomimética , ADN Polimerasa Dirigida por ADN , ADN , ADN/química , ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Biomimética/métodos , Simulación de Dinámica Molecular , Técnicas Biosensibles/métodos , Nanotecnología/métodosRESUMEN
With the increasing spread of multidrug-resistant (MDR) bacteria worldwide, it is needed to develop antibiotics-alternative strategies for the treatment of bacterial infections. This work develops a multifunctional single-component palladium nanosheet (PdNS) with broad-spectrum and highly effective bactericidal activity against MDR bacteria. PdNS exerts its endogenous nanoknife (mechanical cutting) effect and peroxidase-like activity independent of light. Under near-infrared region (NIR) light irradiation, PdNS exhibits photothermal effect to produce local heat and meanwhile possesses photodynamic effect to generate 1O2; notably, PdNS has catalase-like activity-dependent extra photodynamic effect upon H2O2 addition. PdNS+H2O2+NIR employs a collectively synergistic mechanism of nanoknife effect, peroxidase/catalase-like catalytic activity, photothermal effect, and photodynamic effect for bacterial killing. PdNS+H2O2+NIR causes compensatory elevated phospholipid biosynthesis, disordered energy metabolism, increased cellular ROS levels and excessive oxidative stress, and inhibited nucleic acid synthesis in bacteria. In mice, PdNS+H2O2+NIR gives >92.7% bactericidal rates at infected wounds and almost the full recovery of infected wounds, and it leads to extensive down-regulation of proinflammatory pathways and comprehensive up-regulation of wound healing pathways, conferring elevated inflammation resolution and meanwhile accelerated wound repair. PdNS+H2O2+NIR represents a highly efficient nanoplatform for photoenhanced treatment of superficial infections.
RESUMEN
Coxiella burnetii is the etiological agent of the zoonotic disease Q fever, which is featured by its ability to replicate in acid vacuoles resembling the lysosomal network. One key virulence determinant of C. burnetii is the Dot/Icm system that transfers more than 150 effector proteins into host cells. These effectors function to construct the lysosome-like compartment permissive for bacterial replication, but the functions of most of these effectors remain elusive. In this study, we used an affinity tag purification mass spectrometry (AP-MS) approach to generate a C. burnetii-human protein-protein interaction (PPI) map involving 53 C. burnetii effectors and 3480 host proteins. This PPI map revealed that the C. burnetii effector CBU0425 (designated CirB) interacts with most subunits of the 20S core proteasome. We found that ectopically expressed CirB inhibits hydrolytic activity of the proteasome. In addition, overexpression of CirB in C. burnetii caused dramatic inhibition of proteasome activity in host cells, while knocking down CirB expression alleviated such inhibitory effects. Moreover, we showed that a region of CirB that spans residues 91-120 binds to the proteasome subunit PSMB5 (beta 5). Finally, PSMB5 knockdown promotes C. burnetii virulence, highlighting the importance of proteasome activity modulation during the course of C. burnetii infection.
Asunto(s)
Coxiella burnetii , Fiebre Q , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Humanos , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Mapas de Interacción de Proteínas , Fiebre Q/metabolismo , Vacuolas/metabolismoRESUMEN
Cyclic di-GMP (c-di-GMP), a ubiquitous secondary messenger in bacteria, affects multiple bacterial behaviors including motility and biofilm formation. c-di-GMP is synthesized by diguanylate cyclase harboring a GGDEF domain and degraded by phosphodiesterase harboring an either EAL or HD-GYP domain. Vibrio parahaemolyticus, the leading cause of seafood-associated gastroenteritis, harbors more than 60 genes involved in c-di-GMP metabolism. However, roles of most of these genes including vpa0198, which encodes a GGDEF-domain containing protein, are still completely unknown. AphA and OpaR are the master quorum sensing (QS) regulators operating at low (LCD) and high cell density (HCD), respectively. QsvR integrates into QS to control gene expression via direct regulation of AphA and OpaR. In this study, we showed that deletion of vpa0198 remarkably reduced c-di-GMP production and biofilm formation, whereas promoted the swimming motility of V. parahaemolyticus. Overexpression of VPA0198 in the vpa0198 mutant strain significantly reduced the swimming and swarming motility and enhanced the biofilm formation ability of V. parahaemolyticus. In addition, transcription of vpa0198 was under the collective regulation of AphA, OpaR and QsvR. AphA activated the transcription of vpa0198 at LCD, whereas QsvR and OpaR coordinately and directly repressed vpa0198 transcription at HCD, thereby leading to a cell density-dependent expression of vpa0198. Therefore, this work expanded the knowledge of synthetic regulatory mechanism of c-di-GMP in V. parahaemolyticus.
Asunto(s)
Proteínas Bacterianas , Biopelículas , GMP Cíclico , Regulación Bacteriana de la Expresión Génica , Percepción de Quorum , Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo , Vibrio parahaemolyticus/fisiología , Biopelículas/crecimiento & desarrollo , Percepción de Quorum/genética , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Factores de TranscripciónRESUMEN
BACKGROUND: Infection of mice with mouse-adapted strains of influenza virus has been widely used to establish mouse pneumonia models. Intranasal inoculation is the traditional route for constructing an influenza virus-induced pneumonia mouse model, while intratracheal inoculation has been gradually applied in recent years. In this article, the pathogenicity of influenza virus-induced pneumonia mouse models following intranasal and aerosolized intratracheal inoculation were compared. METHODS: By comparing the two ways of influenza inoculation, intranasal and intratracheal, a variety of indices such as survival rate, body weight change, viral titer and load, pathological change, lung wet/dry ratio, and inflammatory factors were investigated. Meanwhile, the transcriptome was applied for the initial exploration of the mechanism underlying the variations in the results between the two inoculation methods. RESULTS: The findings suggest that aerosolized intratracheal infection leads to more severe lung injury and higher viral loads in the lungs compared to intranasal infection, which may be influenced by the initial site of infection, sialic acid receptor distribution, and host innate immunity. CONCLUSION: Intratracheal inoculation is a better method for modelling severe pneumonia in mice than intranasal infection.
Asunto(s)
Administración Intranasal , Modelos Animales de Enfermedad , Pulmón , Infecciones por Orthomyxoviridae , Carga Viral , Animales , Ratones , Pulmón/virología , Pulmón/patología , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/patología , Femenino , Aerosoles , Ratones Endogámicos BALB C , Neumonía Viral/virología , Neumonía Viral/patología , Neumonía Viral/inmunología , Orthomyxoviridae/patogenicidad , Perfilación de la Expresión GénicaRESUMEN
Although some methods for estimating the instantaneous reproductive number during epidemics have been developed, the existing frameworks usually require information on the distribution of the serial interval and/or additional contact tracing data. However, in the case of outbreaks of emerging infectious diseases with an unknown natural history or undetermined characteristics, the serial interval and/or contact tracing data are often not available, resulting in inaccurate estimates for this quantity. In the present study, a new framework was specifically designed for joint estimates of the instantaneous reproductive number and serial interval. Concretely, a likelihood function for the two quantities was first introduced. Then, the instantaneous reproductive number and the serial interval were modeled parametrically as a function of time using the interpolation method and a known traditional distribution, respectively. Using the Bayesian information criterion and the Markov Chain Monte Carlo method, we ultimately obtained their estimates and distribution. The simulation study revealed that our estimates of the two quantities were consistent with the ground truth. Seven data sets of historical epidemics were considered and further verified the robust performance of our method. Therefore, to some extent, even if we know only the daily incidence, our method can accurately estimate the instantaneous reproductive number and serial interval to provide crucial information for policymakers to design appropriate prevention and control interventions during epidemics.
Asunto(s)
Epidemias , Teorema de Bayes , Brotes de Enfermedades , Simulación por Computador , Funciones de VerosimilitudRESUMEN
Cellular ionic concentrations are a central factor orchestrating host innate immunity, but no pathogenic mechanism that perturbs host innate immunity by directly targeting metal ions has yet been described. Here, we report a unique virulence strategy of Yersinia pseudotuberculosis (Yptb) involving modulation of the availability of Mn2+, an immunostimulatory metal ion in host cells. We showed that the Yptb type VI secretion system (T6SS) delivered a micropeptide, TssS, into host cells to enhance its virulence. The mutant strain lacking TssS (ΔtssS) showed substantially reduced virulence but induced a significantly stronger host innate immune response, indicating an antagonistic role of this effector in host antimicrobial immunity. Subsequent studies revealed that TssS is a Mn2+-chelating protein and that its Mn2+-chelating ability is essential for the disruption of host innate immunity. Moreover, we showed that Mn2+ enhances the host innate immune response to Yptb infection by activating the stimulator of interferon genes (STING)-mediated immune response. Furthermore, we demonstrated that TssS counteracted the cytoplasmic Mn2+ increase to inhibit the STING-mediated innate immune response by sequestering Mn2+ Finally, TssS-mediated STING inhibition sabotaged bacterial clearance in vivo. These results reveal a previously unrecognized bacterial immune evasion strategy involving modulation of the bioavailability of intracellular metal ions and provide a perspective on the role of the T6SS in pathogenesis.
Asunto(s)
Inmunidad Innata , Manganeso/metabolismo , Proteínas de la Membrana/metabolismo , Sistemas de Secreción Tipo VI , Animales , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Transporte de Proteínas , Yersinia pseudotuberculosis/metabolismo , Yersinia pseudotuberculosis/patogenicidadRESUMEN
Fluorescence-based PCR and other amplification methods have been used for SARS-CoV-2 diagnostics, however, it requires costly fluorescence detectors and probes limiting deploying large-scale screening. Here, a cut-price colorimetric method for SARS-CoV-2 RNA detection by iron manganese silicate nanozyme (IMSN) is established. IMSN catalyzes the oxidation of chromogenic substrates by its peroxidase (POD)-like activity, which is effectively inhibited by pyrophosphate ions (PPi). Due to the large number of PPi generated by amplification processes, SARS-CoV-2 RNA can be detected by a colorimetric readout visible to the naked eye, with the detection limit of 240 copies mL-1 . This conceptually new method has been successfully applied to correctly distinguish positive and negative oropharyngeal swab samples of COVID-19. Colorimetric assay provides a low-cost and instrumental-free solution for nucleic acid detection, which holds great potential for facilitating virus surveillance.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Colorimetría/métodos , ARN Viral/genética , Técnicas de Amplificación de Ácido Nucleico/métodosRESUMEN
Vibrio parahaemolyticus produces dual flagellar systems, i.e., the sheathed polar flagellum (Pof) and numerous lateral flagella (Laf), both of which are strictly regulated by numerous factors. QsvR is an AraC-type regulator that controls biofilm formation and virulence of V. parahaemolyticus. In the present study, we showed that deletion of qsvR significantly enhanced swimming motility of V. parahaemolyticus, while the swarming motility was not affected by QsvR. QsvR bound to the regulatory DNA regions of flgAMN and flgMN within the Pof gene loci to repress their transcription, whereas it negatively controls the transcription of flgBCDEFGHIJ and flgKL-flaC in an indirect manner. However, over-produced QsvR was also likely to possess the binding activity to the regulatory DNA regions of flgBCDEFGHIJ and flgKL-flaC in a heterologous host. In summary, this work demonstrated that QsvR negatively regulated the swimming motility of V. parahaemolyticus via directly action on the transcription of Pof genes.
Asunto(s)
Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo , Flagelos/genética , Flagelos/metabolismo , Genes Bacterianos , Regulación Bacteriana de la Expresión Génica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismoRESUMEN
OBJECTIVES: Pseudomonas aeruginosa has intrinsic antibiotic resistance and the strong ability to acquire additional resistance genes. However, a limited number of investigations provide detailed modular structure dissection and evolutionary analysis of accessory genetic elements (AGEs) and associated resistance genes (ARGs) in P. aeruginosa isolates. The objective of this study is to reveal the prevalence and transmission characteristics of ARGs by epidemiological investigation and bioinformatics analysis of AGEs of P. aeruginosa isolates taken from a Chinese hospital. METHODS: Draft-genome sequencing was conducted for P. aeruginosa clinical isolates (n = 48) collected from a single Chinese hospital between 2019 and 2021. The clones of P. aeruginosa isolates, type 3 secretion system (T3SS)-related virulotypes, and the resistance spectrum were identified using multilocus sequence typing (MLST), polymerase chain reaction (PCR), and antimicrobial susceptibility tests. In addition, 17 of the 48 isolates were fully sequenced. An extensive modular structure dissection and genetic comparison was applied to AGEs of the 17 sequenced P. aeruginosa isolates. RESULTS: From the draft-genome sequencing, 13 STs were identified, showing high genetic diversity. BLAST search and PCR detection of T3SS genes (exoT, exoY, exoS, and exoU) revealed that the exoS+/exoU- virulotype dominated. At least 69 kinds of acquired ARGs, involved in resistance to 10 different categories of antimicrobials, were identified in the 48 P. aeruginosa isolates. Detailed genetic dissection and sequence comparisons were applied to 25 AGEs from the 17 isolates, together with five additional prototype AGEs from GenBank. These 30 AGEs were classified into five groups -- integrative and conjugative elements (ICEs), unit transposons, IncpPBL16 plasmids, Incp60512-IMP plasmids, and IncpPA7790 plasmids. CONCLUSION: This study provides a broad-scale and deeper genomics understanding of P. aeruginosa isolates taken from a single Chinese hospital. The isolates collected are characterized by high genetic diversity, high virulence, and multiple drug resistance. The AGEs in P. aeruginosa chromosomes and plasmids, as important genetic platforms for the spread of ARGs, contribute to enhancing the adaptability of P. aeruginosa in hospital settings.
Asunto(s)
Antiinfecciosos , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/genética , Antibacterianos/farmacología , Tipificación de Secuencias Multilocus , Farmacorresistencia Bacteriana/genética , Productos Finales de Glicación AvanzadaRESUMEN
Vibrio parahaemolyticus, the leading cause of bacterial seafood-associated gastroenteritis, can form biofilms. In this work, the gene expression profiles of V. parahaemolyticus during biofilm formation were investigated by transcriptome sequencing. A total of 183, 503, and 729 genes were significantly differentially expressed in the bacterial cells at 12, 24 and 48 h, respectively, compared with that at 6 h. Of these, 92 genes were consistently activated or repressed from 6 to 48 h. The genes involved in polar flagellum, chemotaxis, mannose-sensitive haemagglutinin type IV pili, capsular polysaccharide, type III secretion system 1 (T3SS1), T3SS2, thermostable direct hemolysin (TDH), type VI secretion system 1 (T6SS1) and T6SS2 were downregulated, whereas those involved in V. parahaemolyticus pathogenicity island (Vp-PAI) (except for T3SS2 and TDH) and membrane fusion proteins were upregulated. Three extracellular protease genes (vppC, prtA and VPA1071) and a dozen of outer membrane protein encoding genes were also significantly differentially expressed during biofilm formation. In addition, five putative c-di-GMP metabolism-associated genes were significantly differentially expressed, which may account for the drop in c-di-GMP levels after the beginning of biofilm formation. Moreover, many putative regulatory genes were significantly differentially expressed, and more than 1000 putative small non-coding RNAs were detected, suggesting that biofilm formation was tightly regulated by complex regulatory networks. The data provided a global view of gene expression profiles during biofilm formation, showing that the significantly differentially expressed genes were involved in multiple cellular pathways, including virulence, biofilm formation, metabolism, and regulation.
Asunto(s)
Vibriosis , Vibrio parahaemolyticus , Humanos , Transcriptoma , Vibrio parahaemolyticus/genética , Virulencia/genética , Factores de Virulencia/genética , Biopelículas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vibriosis/microbiología , Regulación Bacteriana de la Expresión GénicaRESUMEN
Ammonia is one of the common stress factors in aquaculture. However, the effect of chronic ammonia exposure in juvenile oriental river prawn (Macrobrachium nipponense) is currently unexplored. This study explored the effects of chronic ammonia on juvenile healthy oriental river prawns. Fifty prawns (0.123 ± 0.003 g) were exposed to 0, 5, and 15 mg/L total ammonia nitrogen (TAN) in triplicates for 28 days. The effects of chronic ammonia challenge were evaluated on growth, antioxidant capacity, hepatopancreas and gill morphology, and glucose and ammonia metabolism. The results showed that, the chronic ammonia exposure reduced significantly survival rate and weight gain of prawns. The prawns exposed to 15 mg/L ammonia had induced oxidative stress. However, the prawn exposed to 15 mg/L ammonia had significantly lower aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and acid phosphatase activities in the serum. Furthermore, exposure of prawns to 15 mg/L ammonia increased the activities of hexokinase, pyruvate kinase, pyruvate and lactic acid content, and glutamine synthase activity. However, the prawns exposed to 15 mg/L ammonia, reduced succinic dehydrogenase, 6-phosphogluconic dehydrogenase, phosphoenolpyruvate carboxykinase, glutamate synthase, and glutamate dehydrogenase activities but increased ammonia content in serum. The exposure of ammonia deformed lumen, damaged basement membrane and decreased secretory cells in the hepatopancreas, disordered gill epithelial and pillar cells, and caused gill filament base vacuolation. Our study indicates that chronic ammonia stress impairs growth performance, tissue morphology, induces oxidative stress, and alters glucose and ammonia metabolism in juvenile oriental river prawns.
Asunto(s)
Palaemonidae , Animales , Palaemonidae/metabolismo , Amoníaco/toxicidad , Glucosa/metabolismo , Antioxidantes/metabolismo , Estrés OxidativoRESUMEN
Antimony (Sb) and arsenic (As) contamination in agricultural soil poses human health risks through agricultural products. Soil washing with degradable low molecular weight organic acids (LMWOAs) is an eco-friendly strategy to remediate agricultural soils. In this study, three eco-friendly LMWOAs, oxalic acid (OA), tartaric acid (TA), and citric acid (CA), were used to treat Sb and As co-contaminated agricultural soil from Xikuangshan mine area. The OA, TA, and CA washed out 18.4, 16.8, and 26.6% of Sb and 15.3, 19.9, and 23.8% of As from the agricultural soil, with CA being the most efficient reagent for the soil washing. These organic acids also led to pH decline and macronutrients losses. Fraction analysis using a sequential extraction procedure showed that the three organic acids targeted and decreased the specifically sorbed (F2) (by 19.3-37.6% and 2.41-23.5%), amorphous iron oxide associated (F3) (by 49.1-61.2% and 51.2-70.2%), and crystallized iron oxide associated (F4) (by 12.3-26.0% and 26.1-29.1%) Sb and As. The leachability of Sb and As, as well as their concentrations and bioconcentration factor (BCF) in vegetables reduced due to the soil washing. It demonstrated that the bioavailability of both the elements was decreased by the organic acids washing. The concentrations of Sb and As in typical vegetable species cultivated in CA washed soil were less than the threshold value for consumption safety, while those in OA and TA washed soils were still higher than the value, suggesting that only CA is a potential washing reagent in soil washing for Sb- and As-contaminated agricultural soil.
Asunto(s)
Arsénico , Suelo , Humanos , Antimonio , Disponibilidad Biológica , Compuestos Orgánicos , Ácido Oxálico , Ácido CítricoRESUMEN
Coxiella burnetii, the causative agent of zoonotic Q fever, is characterized by replicating inside the lysosome-derived Coxiella-containing vacuole (CCV) in host cells. Some effector proteins secreted by C. burnetii have been reported to be involved in the manipulation of autophagy to facilitate the development of CCVs and bacterial replication. Here, we found that the Coxiella plasmid effector B (CpeB) localizes on vacuole membrane targeted by LC3 and LAMP1 and promotes LC3-II accumulation. Meanwhile, the C. burnetii strain lacking the QpH1 plasmid induced less LC3-II accumulation, which was accompanied by smaller CCVs and lower bacterial loads in THP-1 cells. Expression of CpeB in the strain lacking QpH1 led to restoration in LC3-II accumulation but had no effect on the smaller CCV phenotype. In the severe combined immune deficiency (SCID) mouse model, infections with the strain expressing CpeB led to significantly higher bacterial burdens in the spleen and liver than its parent strain devoid of QpH1. We also found that CpeB targets Rab11a to promote LC3-II accumulation. Intratracheally inoculated C. burnetii resulted in lower bacterial burdens and milder lung lesions in Rab11a conditional knockout (Rab11a-/- CKO) mice. Collectively, these results suggest that CpeB promotes C. burnetii virulence by inducing LC3-II accumulation via a pathway involving Rab11a.
Asunto(s)
Coxiella burnetii , Fiebre Q , Inmunodeficiencia Combinada Grave , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno , Ratones , Ratones SCID , Plásmidos , Fiebre Q/microbiología , Inmunodeficiencia Combinada Grave/metabolismo , Vacuolas/microbiología , VirulenciaRESUMEN
Biofilms formed by Yersinia pestis are able to attach to and block flea's proventriculus, which stimulates the transmission of this pathogen from fleas to mammals. In this study, we found that Nlp (YP1143) enhanced biofilm formation by Y. pestis and had regulatory effects on biofilm-associated genes at the transcriptional level. Phenotypic assays, including colony morphology assay, crystal violet staining, and Caenorhabditis elegans biofilm assay, disclosed that Nlp strongly promoted biofilm formation by Y. pestis. Further gene regulation assays showed that Nlp stimulated the expression of hmsHFRS, hmsCDE and hmsB, while had no regulatory effect on the expression of hmsT and hmsP at the transcriptional level. These findings promoted us to gain more understanding of the complex regulatory circuits controlling biofilm formation by Y. pestis.
Asunto(s)
Peste , Yersinia pestis , Animales , Arvicolinae/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Regulación Bacteriana de la Expresión Génica , Yersinia pestis/metabolismoRESUMEN
The GABAB receptor (GABABR) agonist baclofen has been used to treat alcohol and several other substance use disorders (AUD/SUD), yet its underlying neural mechanism remains unclear. The present study aimed to investigate cortical GABABR dynamics following chronic alcohol exposure. Ex vivo brain slice recordings from mice chronically exposed to alcohol revealed a reduction in GABABR-mediated currents, as well as a decrease of GABAB1/2R and G-protein-coupled inwardly rectifying potassium channel 2 (GIRK2) activities in the motor cortex. Moreover, our data indicated that these alterations could be attributed to dephosphorylation at the site of serine 783 (ser-783) in GABAB2 subunit, which regulates the surface expression of GABABR. Furthermore, a human study using paired-pulse-transcranial magnetic stimulation (TMS) analysis further demonstrated a reduced cortical inhibition mediated by GABABR in patients with AUD. Our findings provide the first evidence that chronic alcohol exposure is associated with significantly impaired cortical GABABR function. The ability to promote GABABR signaling may account for the therapeutic efficacy of baclofen in AUD.
Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Corteza Motora , Animales , Baclofeno/farmacología , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Humanos , Ratones , Receptores de GABA-B/metabolismo , Transducción de SeñalRESUMEN
Hypoxia is one of the challenges in prawns aquaculture. However, the role of thiamine, which is a coenzyme in carbohydrate metabolism with antioxidant properties, in reducing hypoxia in prawns aquaculture is currently unknown. We investigated the effects of thiamine on antioxidant status, carbohydrate metabolism and acute hypoxia in oriental river prawn, Macrobrachium nipponense. One thousand eight hundred prawns (0.123 ± 0.003 g) were fed five diets (60 prawns each tank, six replicates per diet) supplemented with graded thiamine levels (5.69, 70.70, 133.67, 268.33 and 532.00 mg/kg dry mater) for eight weeks and then exposed to hypoxia stress for 12 h followed by reoxyegnation for 12 h. The results showed that, under normoxia, prawns fed the 133.67 or 268.33 mg/kg thiamine diet had significantly lower glucose 6-phosphatedehydrogenase, succinate dehydrogenase and phosphoenolpyruvate carboxykinase activities than those fed the other diets. Moreover, total antioxidant capacity (T-AOC) increased significantly when prawns were fed the 133.67 mg/kg thiamine diet. Superoxide dismutase (SOD) activity and malonaldehyde (MDA) content also increased significantly when prawns were fed the 268.33 or 532.00 mg/kg thiamine diet under hypoxia. And the significantly increased SOD activity and MDA level also observed in prawns fed 532.00 mg/kg thiamine under reoxygenation. Under normoxia, prawns fed the 70.70 or 133.67 mg/kg thiamine diet decreased the mRNA expressions of AMP-activated protein kinase-alpha (AMPK-α), pyruvate dehydrogenase-E1-α subunit (PDH-E1-α) and hypoxia-inducible factor-1s (HIF-1α, HIF-1ß), but increased the mRNA expressions of phosphofructokinase (PFK) significantly. After 12 h of hypoxia, the energy metabolism related genes (AMPK-ß, AMPK-γ, PFK, PDH-E1-α), hypoxia-inducible factor related genes (HIF-1α, HIF-1ß) and thiamine transporter gene (SLC19A2) were up-regulated significantly in prawns fed the 133.67 or 268.33 mg/kg thiamine diets. After 12 h of reoxygenation, prawns fed the 133.67 or 268.33 mg/kg diet significantly decreased the SOD activity, MDA level and SLC19A2 mRNA expression compared with other diets. The optimum thiamine was 161.20 mg/kg for minimum MDA content and 143.17 mg/kg for maximum T-AOC activity based on cubic regression analysis. In summary, supplementing 143.17 to 161.20 mg/kg thiamine in the diets for M. nipponense improves the antioxidant capacity under normoxia and reduces the oxidative damage under hypoxia stress.
Asunto(s)
Palaemonidae , Animales , Antioxidantes/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Tiamina/metabolismo , Tiamina/farmacología , Dieta/veterinaria , Hipoxia , Metabolismo de los Hidratos de Carbono , Superóxido Dismutasa/genética , ARN Mensajero/metabolismoRESUMEN
BACKGROUND: The carbapenem-resistance genes blaVIM are widely disseminated in Pseudomonas, and frequently harbored within class 1 integrons that reside within various mobile genetic elements (MGEs). However, there are few reports on detailed genetic dissection of blaVIM-carrying MGEs in Pseudomonas. METHODS: This study presented the complete sequences of five blaVIM-2/-4-carrying MGEs, including two plasmids, two chromosomal integrative and mobilizable elements (IMEs), and one chromosomal integrative and conjugative element (ICE) from five different Pseudomonas isolates. RESULTS: The two plasmids were assigned to a novel incompatibility (Inc) group IncpSTY, which included only seven available plasmids with determined complete sequences and could be further divided into three subgroups IncpSTY-1/2/3. A detailed sequence comparison was then applied to a collection of 15 MGEs belonging to four different groups: three representative IncpSTY plasmids, two Tn6916-related IMEs, two Tn6918-related IMEs, and eight Tn6417-related ICEs and ten of these 15 MGEs were first time identified. At least 22 genes involving resistance to seven different categories of antibiotics and heavy metals were identified within these 15 MGEs, and most of these resistance genes were located within the accessory modules integrated as exogenous DNA regions into these MGEs. Especially, eleven of these 15 MGEs carried the blaVIM genes, which were located within 11 different concise class 1 integrons. CONCLUSION: These blaVIM-carrying integrons were further integrated into the above plasmids, IMEs/ICEs with intercellular mobility. These MGEs could transfer between Pseudomonas isolates, which resulted in the accumulation and spread of blaVIM among Pseudomonas and thus was helpful for the bacteria to survival from the stress of antibiotics. Data presented here provided a deeper insight into the genetic diversification and evolution of VIM-encoding MGEs in Pseudomonas.