Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 526
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 56(12): 2773-2789.e8, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37992711

RESUMEN

Although the gut microbiota can influence central nervous system (CNS) autoimmune diseases, the contribution of the intestinal epithelium to CNS autoimmunity is less clear. Here, we showed that intestinal epithelial dopamine D2 receptors (IEC DRD2) promoted sex-specific disease progression in an animal model of multiple sclerosis. Female mice lacking Drd2 selectively in intestinal epithelial cells showed a blunted inflammatory response in the CNS and reduced disease progression. In contrast, overexpression or activation of IEC DRD2 by phenylethylamine administration exacerbated disease severity. This was accompanied by altered lysozyme expression and gut microbiota composition, including reduced abundance of Lactobacillus species. Furthermore, treatment with N2-acetyl-L-lysine, a metabolite derived from Lactobacillus, suppressed microglial activation and neurodegeneration. Taken together, our study indicates that IEC DRD2 hyperactivity impacts gut microbial abundances and increases susceptibility to CNS autoimmune diseases in a female-biased manner, opening up future avenues for sex-specific interventions of CNS autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Esclerosis Múltiple , Masculino , Femenino , Ratones , Animales , Esclerosis Múltiple/metabolismo , Modelos Animales de Enfermedad , Transducción de Señal , Progresión de la Enfermedad , Receptores Dopaminérgicos
2.
Mol Cell ; 78(1): 42-56.e6, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32035036

RESUMEN

The functional relevance and mechanistic basis of the effects of the neurotransmitter dopamine (DA) on inflammation remain unclear. Here we reveal that DA inhibited TLR2-induced NF-κB activation and inflammation via the DRD5 receptor in macrophages. We found that the DRD5 receptor, via the EFD and IYX(X)I/L motifs in its CT and IC3 loop, respectively, can directly recruit TRAF6 and its negative regulator ARRB2 to form a multi-protein complex also containing downstream signaling proteins, such as TAK1, IKKs, and PP2A, that impairs TRAF6-mediated activation of NF-κB and expression of pro-inflammatory genes. Furthermore, the DA-DRD5-ARRB2-PP2A signaling axis can prevent S. aureus-induced inflammation and protect mice against S. aureus-induced sepsis and meningitis after DA treatment. Collectively, these findings provide the first demonstration of DA-DRD5 signaling acting to control inflammation and a detailed delineation of the underlying mechanism and identify the DRD5-ARRB2-PP2A axis as a potential target for future therapy of inflammation-associated diseases such as meningitis and sepsis.


Asunto(s)
Dopamina/fisiología , Inflamación/metabolismo , Proteína Fosfatasa 2/metabolismo , Receptores de Dopamina D5/metabolismo , Transducción de Señal , Arrestina beta 2/metabolismo , Secuencias de Aminoácidos , Animales , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citocinas/genética , Citocinas/metabolismo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Receptores de Dopamina D5/química , Factor 6 Asociado a Receptor de TNF/antagonistas & inhibidores , Factor 6 Asociado a Receptor de TNF/metabolismo , Receptor Toll-Like 2/antagonistas & inhibidores , Arrestina beta 2/fisiología
3.
Proc Natl Acad Sci U S A ; 121(4): e2314454121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38232283

RESUMEN

The discoveries of ferromagnetism down to the atomically thin limit in van der Waals (vdW) crystals by mechanical exfoliation have enriched the family of magnetic thin films [C. Gong et al., Nature 546, 265-269 (2017) and B. Huang et al., Nature 546, 270-273 (2017)]. However, compared to the study of traditional magnetic thin films by physical deposition methods, the toolbox of the vdW crystals based on mechanical exfoliation and transfer suffers from low yield and ambient corrosion problem and now is facing new challenges to study magnetism. For example, the formation of magnetic superlattice is difficult in vdW crystals, which limits the study of the interlayer interaction in vdW crystals [M. Gibertini, M. Koperski, A. F. Morpurgo, K. S. Novoselov, Nat. Nanotechnol. 14, 408-419 (2019)]. Here, we report a strategy of interlayer engineering of the magnetic vdW crystal Fe3GeTe2 (FGT) by intercalating quaternary ammonium cations into the vdW spacing. Both three-dimensional (3D) vdW superlattice and two-dimensional (2D) vdW monolayer can be formed by using this method based on the amount of intercalant. On the one hand, the FGT superlattice shows a strong 3D critical behavior with a decreased coercivity and increased domain wall size, attributed to the co-engineering of the anisotropy, exchange interaction, and electron doping by intercalation. On the other hand, the 2D vdW few layers obtained by over-intercalation are capped with organic molecules from the bulk crystal, which not only enhances the ferromagnetic transition temperature (TC), but also substantially protects the thin samples from degradation, thus allowing the preparation of large-scale FGT ink in ambient environment.

4.
Proc Natl Acad Sci U S A ; 120(8): e2210643120, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36795751

RESUMEN

Microglia play a critical role in the pathogenic process of neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease (AD). Upon pathological stimulation, microglia are converted from a surveillant to an overactivated phenotype. However, the molecular characters of proliferating microglia and their contributions to the pathogenesis of neurodegeneration remain unclear. Here, we identify chondroitin sulfate proteoglycan 4 (Cspg4, also known as neural/glial antigen 2)-expressing microglia as a specific subset of microglia with proliferative capability during neurodegeneration. We found that the percentage of Cspg4+ microglia was increased in mouse models of PD. The transcriptomic analysis of Cspg4+ microglia revealed that the subcluster Cspg4high microglia displayed a unique transcriptomic signature, which was characterized by the enrichment of orthologous cell cycle genes and a lower expression of genes responsible for neuroinflammation and phagocytosis. Their gene signatures were also distinct from that of known disease-associated microglia. The proliferation of quiescent Cspg4high microglia was evoked by pathological α-synuclein. Following the transplantation in the adult brain with the depletion of endogenous microglia, Cspg4high microglia grafts showed higher survival rates than their Cspg4- counterparts. Consistently, Cspg4high microglia were detected in the brain of AD patients and displayed the expansion in animal models of AD. These findings suggest that Cspg4high microglia are one of the origins of microgliosis during neurodegeneration and may open up a avenue for the treatment of neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Ratones , Animales , Microglía/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Fagocitosis
5.
Proc Natl Acad Sci U S A ; 120(45): e2312751120, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37903260

RESUMEN

We report in this work several unexpected experimental observations on evaporation from hydrogels under visible light illumination. 1) Partially wetted hydrogels become absorbing in the visible spectral range, where the absorption by both the water and the hydrogel materials is negligible. 2) Illumination of hydrogel under solar or visible-spectrum light-emitting diode leads to evaporation rates exceeding the thermal evaporation limit, even in hydrogels without additional absorbers. 3) The evaporation rates are wavelength dependent, peaking at 520 nm. 4) Temperature of the vapor phase becomes cooler under light illumination and shows a flat region due to breaking-up of the clusters that saturates air. And 5) vapor phase transmission spectra under light show new features and peak shifts. We interpret these observations by introducing the hypothesis that photons in the visible spectrum can cleave water clusters off surfaces due to large electrical field gradients and quadrupole force on molecular clusters. We call the light-induced evaporation process the photomolecular effect. The photomolecular evaporation might be happening widely in nature, potentially impacting climate and plants' growth, and can be exploited for clean water and energy technologies.

6.
Proc Natl Acad Sci U S A ; 120(34): e2300856120, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37579165

RESUMEN

Space heating and cooling consume ~13% of global energy every year. The development of advanced materials that promote energy savings in heating and cooling is gaining increasing attention. To thermally isolate the space of concern and minimize the heat exchange with the outside environment has been recognized as one effective solution. To this end, here, we develop a universal category of colorful low-emissivity paints to form bilayer coatings consisting of an infrared (IR)-reflective bottom layer and an IR-transparent top layer in colors. The colorful visual appearance ensures the aesthetical effect comparable to conventional paints. High mid-infrared reflectance (up to ~80%) is achieved, which is more than 10 times as conventional paints in the same colors, efficiently reducing both heat gain and loss from/to the outside environment. The high near-IR reflectance also benefits reducing solar heat gain in hot days. The advantageous features of these paints strike a balance between energy savings and penalties for heating and cooling throughout the year, providing a comprehensive year-round energy-saving solution adaptable to a wide variety of climatic zones. Taking a typical midrise apartment building as an example, the application of our colorful low-emissivity paints can realize positive heating, ventilation, and air conditioning energy saving, up to 27.24 MJ/m2/y (corresponding to the 7.4% saving ratio). Moreover, the versatility of the paint, along with its applicability to diverse surfaces of various shapes and materials, makes the paints extensively useful in a range of scenarios, including building envelopes, transportation, and storage.

7.
Mol Psychiatry ; 29(4): 1088-1098, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38267620

RESUMEN

This study aims to identify dynamic patterns within the spatiotemporal feature space that are specific to nonpsychotic major depression (NPMD), psychotic major depression (PMD), and schizophrenia (SCZ). The study also evaluates the effectiveness of machine learning algorithms based on these network manifestations in differentiating individuals with NPMD, PMD, and SCZ. A total of 579 participants were recruited, including 152 patients with NPMD, 45 patients with PMD, 185 patients with SCZ, and 197 healthy controls (HCs). A dynamic functional connectivity (DFC) approach was employed to estimate the principal FC states within each diagnostic group. Incremental proportions of data (ranging from 10% to 100%) within each diagnostic group were used for variability testing. DFC metrics, such as proportion, mean duration, and transition number, were examined among the four diagnostic groups to identify disease-related neural activity patterns. These patterns were then used to train a two-layer classifier for the four groups (HC, NPMD, PMD, and SCZ). The four principal brain states (i.e., states 1,2,3, and 4) identified by the DFC approach were highly representative within and across diagnostic groups. Between-group comparisons revealed significant differences in network metrics of state 2 and state 3, within delta, theta, and gamma frequency bands, between healthy individuals and patients in each diagnostic group (p < 0.01, FDR corrected). Moreover, the identified key dynamic network metrics achieved an accuracy of 73.1 ± 2.8% in the four-way classification of HC, NPMD, PMD, and SCZ, outperforming the static functional connectivity (SFC) approach (p < 0.001). These findings suggest that the proposed DFC approach can identify dynamic network biomarkers at the single-subject level. These biomarkers have the potential to accurately differentiate individual subjects among various diagnostic groups of psychiatric disorders or healthy controls. This work may contribute to the development of a valuable EEG-based diagnostic tool with enhanced accuracy and assistive capabilities.


Asunto(s)
Encéfalo , Trastorno Depresivo Mayor , Electroencefalografía , Esquizofrenia , Humanos , Trastorno Depresivo Mayor/fisiopatología , Esquizofrenia/fisiopatología , Masculino , Femenino , Adulto , Electroencefalografía/métodos , Encéfalo/fisiopatología , Persona de Mediana Edad , Aprendizaje Automático , Trastornos Psicóticos/fisiopatología , Trastornos Psicóticos/diagnóstico , Conectoma/métodos , Adulto Joven , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen
8.
J Cell Mol Med ; 28(7): e18235, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38509735

RESUMEN

Kidney stone, one of the oldest known diseases, has plagued humans for centuries, consistently imposing a heavy burden on patients and healthcare systems worldwide due to their high incidence and recurrence rates. Advancements in endoscopy, imaging, genetics, molecular biology and bioinformatics have led to a deeper and more comprehensive understanding of the mechanism behind nephrolithiasis. Kidney stone formation is a complex, multi-step and long-term process involving the transformation of stone-forming salts from free ions into asymptomatic or symptomatic stones influenced by physical, chemical and biological factors. Among the various types of kidney stones observed in clinical practice, calcareous nephrolithiasis is currently the most common and exhibits the most intricate formation mechanism. Extensive research suggests that calcareous nephrolithiasis primarily originates from interstitial subepithelial calcified plaques and/or calcified blockages in the openings of collecting ducts. These calcified plaques and blockages eventually come into contact with urine in the renal pelvis, serving as a nidus for crystal formation and subsequent stone growth. Both pathways of stone formation share similar mechanisms, such as the drive of abnormal urine composition, involvement of oxidative stress and inflammation, and an imbalance of stone inhibitors and promoters. However, they also possess unique characteristics. Hence, this review aims to provide detailed description and present recent discoveries regarding the formation processes of calcareous nephrolithiasis from two distinct birthplaces: renal interstitium and tubule lumen.


Asunto(s)
Calcinosis , Cálculos Renales , Humanos , Médula Renal/metabolismo , Cálculos Renales/complicaciones , Cálculos Renales/metabolismo , Calcinosis/metabolismo , Endoscopía , Inflamación/metabolismo
9.
BMC Genomics ; 25(1): 23, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166718

RESUMEN

BACKGROUND: Jianli pig, a renowned indigenous breed in China, has the characteristics of a two-end black (TEB) coat color, excellent meat quality, strong adaptability and increased prolificacy. However, there is limited information available regarding the genetic diversity, population structure and genomic regions under selection of Jianli pig. On the other hand, the genetic mechanism of TEB coat color has remained largely unknown. RESULTS: In this study, the whole genome resequencing of 30 Jianli pigs within a context of 153 individuals representing 13 diverse breeds was performed. The population structure analysis revealed that Jianli pigs have close genetic relationships with the Tongcheng pig breed, their geographical neighbors. Three methods (observed heterozygosity, expected heterozygosity, and runs of homozygosity) implied a relatively high level of genetic diversity and, a low inbreeding coefficient in Jianli compared with other pigs. We used Fst and XP-EHH to detect the selection signatures in Jianli pigs compared with Asian wild boar. A total of 451 candidate genes influencing meat quality (CREBBP, ADCY9, EEPD1 and HDAC9), reproduction (ESR1 and FANCA), and coat color (EDNRB, MITF and MC1R), were detected by gene annotation analysis. Finally, to fine-map the genomic region for the two-end black (TEB) coat color phenotype in Jianli pigs, we performed three signature selection methods between the TEB coat color and no-TEB coat color pig breeds. The current study, further confirmed that the EDNRB gene is a candidate gene for TEB color phenotype found in Chinese pigs, including Jinhua pigs, and the haplotype harboring 25 SNPs in the EDNRB gene may promote the formation of TEB coat color. Further ATAC-seq and luciferase reporter assays of these regions suggest that the 25-SNPs region was a strong candidate causative mutation that regulates the TEB coat color phenotype by altering enhancer function. CONCLUSION: Our results advanced the understanding of the genetic mechanism behind artificial selection, and provided further resources for the protection and breeding improvement of Jianli pigs.


Asunto(s)
Genoma , Receptor de Endotelina B , Selección Genética , Animales , Haplotipos , Homocigoto , Fenotipo , Polimorfismo de Nucleótido Simple , Receptor de Endotelina B/genética , Porcinos/genética
10.
Mol Cancer ; 23(1): 52, 2024 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461272

RESUMEN

BACKGROUND: Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) is one of the causes of tumor immune tolerance and failure of cancer immunotherapy. Here, we found that bladder cancer (BCa)-derived exosomal circRNA_0013936 could enhance the immunosuppressive activity of PMN-MDSCs by regulating the expression of fatty acid transporter protein 2 (FATP2) and receptor-interacting protein kinase 3 (RIPK3). However, the underlying mechanism remains largely unknown. METHODS: BCa-derived exosomes was isolated and used for a series of experiments. RNA sequencing was used to identify the differentially expressed circRNAs. Western blotting, immunohistochemistry, immunofluorescence, qRT-PCR, ELISA and Flow cytometry were performed to reveal the potential mechanism of circRNA_0013936 promoting the immunosuppressive activity of PMN-MDSC. RESULTS: CircRNA_0013936 enriched in BCa-derived exosomes could promote the expression of FATP2 and inhibit the expression of RIPK3 in PMN-MDSCs. Mechanistically, circRNA_0013936 promoted the expression of FATP2 and inhibited the expression of RIPK3 expression via sponging miR-320a and miR-301b, which directly targeted JAK2 and CREB1 respectively. Ultimately, circRNA_0013936 significantly inhibited the functions of CD8+ T cells by up-regulating FATP2 through the circRNA_0013936/miR-320a/JAK2 pathway, and down-regulating RIPK3 through the circRNA_0013936/miR-301b/CREB1 pathway in PMN-MDSCs. CONCLUSIONS: BCa-derived exosomal circRNA_0013936 promotes suppressive immunity by up-regulating FATP2 through the circRNA_0013936/miR-320a/JAK2 pathway and down-regulating RIPK3 through the circRNA_0013936/miR-301b-3p/CREB1 pathway in PMN-MDSCs. These findings help to find new targets for clinical treatment of human bladder cancer.


Asunto(s)
MicroARNs , Células Supresoras de Origen Mieloide , ARN Circular , Neoplasias de la Vejiga Urinaria , Humanos , Linfocitos T CD8-positivos/metabolismo , Ácidos Grasos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Células Supresoras de Origen Mieloide/metabolismo , Proteínas Quinasas/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Exosomas/genética , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
11.
Cancer Sci ; 115(3): 763-776, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38243657

RESUMEN

Hepatocellular carcinoma (HCC) does not respond well to current treatments, even immune checkpoint inhibitors. PD-L1 (programmed cell death ligand 1 or CD274 molecule)-mediated immune escape of tumor cells may be a key factor affecting the efficacy of immune checkpoint inhibitor (ICI) therapy. However, the regulatory mechanisms of PD-L1 expression and immune escape require further exploration. Here, we observed that DDX1 (DEAD-box helicase 1) was overexpressed in HCC tissues and associated with poor prognosis in patients with HCC. Additionally, DDX1 expression correlated negatively with CD8+ T cell frequency. DDX1 overexpression significantly increased interferon gamma (IFN-γ)-mediated PD-L1 expression in HCC cell lines. DDX1 overexpression decreased IFN-γ and granzyme B production in CD8+ T cells and inhibited CD8+ T cell cytotoxic function in vitro and in vivo. In conclusion, DDX1 plays an essential role in developing the immune escape microenvironment, rendering it a potential predictor of ICI therapy efficacy in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Antígeno B7-H1/metabolismo , Carcinoma Hepatocelular/metabolismo , Linfocitos T CD8-positivos , ARN Helicasas DEAD-box/metabolismo , Interferón gamma/metabolismo , Neoplasias Hepáticas/metabolismo , Microambiente Tumoral
12.
Cancer Sci ; 115(5): 1417-1432, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38422408

RESUMEN

Platelets and M2 macrophages both play crucial roles in tumorigenesis, but their relationship and the prognosis value of the relative genes in bladder cancer (BLCA) remain obscure. In the present study, we found that platelets stimulated by BLCA cell lines could promote M2 macrophage polarization, and platelets were significantly associated with the infiltration of M2 macrophages in BLCA samples. Through the bioinformatic analyses, A2M, TGFB3, and MYLK, which were associated with platelets and M2 macrophages, were identified and verified in vitro and then included in the predictive model. A platelet and M2 macrophage-related gene signature was constructed to evaluate the prognosis and immunotherapeutic sensitivity, helping to guide personalized treatment and to disclose the underlying mechanisms.


Asunto(s)
Plaquetas , Inmunoterapia , Macrófagos , Neoplasias de la Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/terapia , Neoplasias de la Vejiga Urinaria/inmunología , Neoplasias de la Vejiga Urinaria/patología , Humanos , Pronóstico , Macrófagos/inmunología , Macrófagos/metabolismo , Plaquetas/metabolismo , Línea Celular Tumoral , Inmunoterapia/métodos , Masculino , Femenino , Regulación Neoplásica de la Expresión Génica , Biología Computacional/métodos , Ratones , Transcriptoma , Persona de Mediana Edad , Perfilación de la Expresión Génica/métodos
13.
Apoptosis ; 29(1-2): 121-141, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37848672

RESUMEN

Bladder cancer (BLCA) is ranked among the top ten most prevalent cancers worldwide and is the second most common malignant tumor within the field of urology. The limited effectiveness of immune targeted therapy in treating BLCA, due to its high metastasis and recurrence rates, necessitates the identification of new therapeutic targets. Secretogranin II (SCG2), a member of the chromaffin granin/secreted granin family, plays a crucial role in the regulated release of peptides and hormones. The role of SCG2 in the tumor microenvironment (TME) of lung adenocarcinoma and colon cancer has been established, but its functional significance in BLCA remains uncertain. This study aimed to investigate SCG2 expression in 15 bladder cancer tissue samples and their corresponding adjacent control tissues. The potential involvement of SCG2 in BLCA progression was assessed using various techniques, including analysis of public databases, immunohistochemistry, Western Blotting, immunofluorescence, wound-healing assay, Transwell assay, and xenograft tumor formation experiments in nude mice. This study provided novel evidence indicating that SCG2 plays a pivotal role in facilitating the proliferation, migration, and invasion of BLCA by activating the MEK/Erk and MEK/IKK/NF-κB signaling pathways, as well as by promoting M2 macrophage polarization. These findings propose the potential of SCG2 as a molecular target for immunotherapy in human BLCA.


Asunto(s)
FN-kappa B , Neoplasias de la Vejiga Urinaria , Animales , Humanos , Ratones , Apoptosis , Cromograninas/uso terapéutico , Ratones Desnudos , Quinasas de Proteína Quinasa Activadas por Mitógenos , FN-kappa B/genética , FN-kappa B/metabolismo , Secretogranina II/genética , Secretogranina II/metabolismo , Secretogranina II/uso terapéutico , Microambiente Tumoral , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/metabolismo
14.
Funct Integr Genomics ; 24(1): 19, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38265702

RESUMEN

The adenosine-signaling axis has been recognized as an important immunomodulatory pathway in tumor immunity. However, the biological role of the adenosine-signaling axis in the remodeling of the tumor microenvironment (TME) in lung adenocarcinoma (LUAD) remains unclear. Here, we quantified adenosine signaling (ado_sig) in LUAD samples using the GSVA method and assessed the prognostic value of adenosine in LUAD. Afterward, we explored the heterogeneity of the tumor-immune microenvironment at different adenosine levels. In addition, we analyzed the potential biological pathways engaged by adenosine. Next, we established single-cell transcriptional profiles of LUAD and analyzed cellular composition and cell-cell communication analysis under different adenosine microenvironments. Moreover, we established adenosine-related prognostic signatures (ARS) based on comprehensive bioinformatics analysis and evaluated the efficacy of ARS in predicting immunotherapy. The results demonstrated that adenosine signaling adversely impacted the survival of immune-enriched LUAD. The high-adenosine microenvironment exhibited elevated pro-tumor-immune infiltration, including M2 macrophages and displayed notably increased epithelial-mesenchymal transition (EMT) transformation. Furthermore, adenosine signaling displayed significant associations with the expression patterns and prognostic value of immunomodulators within the TME. Single-cell sequencing data revealed increased fibroblast occupancy and a prominent activation of the SPP1 signaling pathway in the high adenosine-signaling microenvironment. The ARS exhibited promising effectiveness in prognostication and predicting immunotherapy response in LUAD. In summary, overexpression of adenosine can cause a worsened prognosis in the LUAD with abundant immune infiltration. Moreover, increased adenosine levels are associated with pro-tumor-immune infiltration, active EMT transformation, pro-tumor angiogenesis, and other factors promoting cancer progression, which collectively contribute to the formation of an immunosuppressive microenvironment. Importantly, the ARS developed in this study demonstrate high efficacy in evaluating the response to immunotherapy.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Pronóstico , Microambiente Tumoral , Análisis de Secuencia de ARN , Inmunoterapia , Adenosina
15.
Funct Integr Genomics ; 24(4): 118, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935217

RESUMEN

Lung adenocarcinoma (LUAD) has a malignant characteristic that is highly aggressive and prone to metastasis. There is still a lack of suitable biomarkers to facilitate the refinement of precision-based therapeutic regimens. We used a combination of 10 known clustering algorithms and the omics data from 4 dimensions to identify high-resolution molecular subtypes of LUAD. Subsequently, consensus machine learning-related prognostic signature (CMRS) was developed based on subtypes related genes and an integrated program framework containing 10 machine learning algorithms. The efficiency of CMRS was analyzed from the perspectives of tumor microenvironment, genomic landscape, immunotherapy, drug sensitivity, and single-cell analysis. In terms of results, through multi-omics clustering, we identified 2 comprehensive omics subtypes (CSs) in which CS1 patients had worse survival outcomes, higher aggressiveness, mRNAsi and mutation frequency. Subsequently, we developed CMRS based on 13 key genes up-regulated in CS1. The prognostic predictive efficiency of CMRS was superior to most established LUAD prognostic signatures. CMRS demonstrated a strong correlation with tumor microenvironmental feature variants and genomic instability generation. Regarding clinical performance, patients in the high CMRS group were more likely to benefit from immunotherapy, whereas low CMRS were more likely to benefit from chemotherapy and targeted drug therapy. In addition, we evaluated that drugs such as neratinib, oligomycin A, and others may be candidates for patients in the high CMRS group. Single-cell analysis revealed that CMRS-related genes were mainly expressed in epithelial cells. The novel molecular subtypes identified in this study based on multi-omics data could provide new insights into the stratified treatment of LUAD, while the development of CMRS could serve as a candidate indicator of the degree of benefit of precision therapy and immunotherapy for LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Inmunoterapia , Neoplasias Pulmonares , Aprendizaje Automático , Microambiente Tumoral , Humanos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/terapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patología , Pronóstico , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Genómica , Multiómica
16.
Small ; : e2311675, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441359

RESUMEN

The high oxygen electrocatalytic overpotential of flexible cathodes due to sluggish reaction kinetics result in low energy conversion efficiency of wearable zinc-air batteries (ZABs). Herein, lignin, as a 3D flexible carbon-rich macromolecule, is employed for partial replacement of polyacrylonitrile and constructing flexible freestanding air electrodes (FFAEs) with large amount of mesopores and multi-hollow channels via electrospinning combined with annealing strategy. The presence of lignin with disordered structure decreases the graphitization of carbon fibers, increases the structural defects, and optimizes the pore structure, facilitating the enhancement of electron-transfer kinetics. This unique structure effectively improves the accessibility of graphitic-N/pyridinic-N with oxygen reduction reaction (ORR) activity and pyridinic-N with oxygen evolution reaction (OER) activity for FFAEs, accelerating the mass transfer process of oxygen-active species. The resulting N-doped hollow carbon fiber films (NHCFs) exhibit superior bifunctional ORR/OER performance with a low potential difference of only 0.60 V. The rechargeable ZABs with NHCFs as metal-free cathodes possess a long-term cycling stability. Furthermore, the NHCFs can be used as FFAEs for flexible ZABs which have a high specific capacity and good cycling stability under different bending states. This work paves the way to design and produce highly active metal-free bifunctional FFAEs for electrochemical energy devices.

17.
J Transl Med ; 22(1): 335, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589907

RESUMEN

OBJECTIVE: This study aimed to assess the functions of cell division cycle protein 45 (CDC45) in Non-small cell lung cancer (NSCLC) cancer and its effects on stemness and metastasis. METHODS: Firstly, differentially expressed genes related to lung cancer metastasis and stemness were screened by differential analysis and lasso regression. Then, in vitro, experiments such as colony formation assay, scratch assay, and transwell assay were conducted to evaluate the impact of CDC45 knockdown on the proliferation and migration abilities of lung cancer cells. Western blotting was used to measure the expression levels of related proteins and investigate the regulation of CDC45 on the cell cycle. Finally, in vivo model with subcutaneous injection of lung cancer cells was performed to verify the effect of CDC45 on tumor growth. RESULTS: This study identified CDC45 as a key gene potentially influencing tumor stemness and lymph node metastasis. Knockdown of CDC45 not only suppressed the proliferation and migration abilities of lung cancer cells but also caused cell cycle arrest at the G2/M phase. Further analysis revealed a negative correlation between CDC45 and cell cycle-related proteins, stemness-related markers, and tumor mutations. Mouse experiments confirmed that CDC45 knockdown inhibited tumor growth. CONCLUSION: As a novel regulator of stemness, CDC45 plays a role in regulating lung cancer cell proliferation, migration, and cell cycle. Therefore, CDC45 may serve as a potential target for lung cancer treatment and provide a reference for further mechanistic research and therapeutic development.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Línea Celular Tumoral , Adenocarcinoma del Pulmón/genética , Proliferación Celular/genética , Puntos de Control del Ciclo Celular/genética , División Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica
18.
New Phytol ; 241(4): 1720-1731, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38013483

RESUMEN

Wilforlide A is one of the main active constituents produced in trace amounts in Tripterygium wilfordii Hook F, which has excellent anti-inflammatory and immune suppressive effects. Despite the seeming structural simplicity of the compound, the biosynthetic pathway of wilforlide A remains unknown. Gene-specific expression analysis and genome mining were used to identify the gene candidates, and their functions were studied in vitro and in vivo. A modularized two-step (M2S) technique and CRISPR-Cas9 methods were used to construct engineering yeast. Here, we identified a cytochrome P450, TwCYP82AS1, that catalyses C-22 hydroxylation during wilforlide A biosynthesis. We also found that TwCYP712K1 to K3 can further oxidize the C-29 carboxylation of oleanane-type triterpenes in addition to friedelane-type triterpenes. Reconstitution of the biosynthetic pathway in engineered yeast increased the precursor supply, and combining TwCYP82AS1 and TwCYP712Ks produced abrusgenic acid, which was briefly acidified to achieve the semisynthesis of wilforlide A. Our work presents an alternative metabolic engineering approach for obtaining wilforlide A without relying on extraction from plants.


Asunto(s)
Ácido Oleanólico/análogos & derivados , Saccharomyces cerevisiae , Triterpenos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Triterpenos/metabolismo , Antiinflamatorios/metabolismo
19.
BMC Cancer ; 24(1): 648, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802747

RESUMEN

BACKGROUND: This study aimed to assess the long-term effect of level IIb clinical target volume (CTV) optimisation on survival, xerostomia, and dysphagia in patients with nasopharyngeal carcinoma (NPC). METHODS: Clinical data of 415 patients with NPC treated with intensity-modulated radiotherapy between December 2014 and October 2018 were retrospectively analysed. The patients were categorised into modified and comparison groups. Late xerostomia and dysphagia were evaluated using Radiation Therapy Oncology Group/European Organisation for Research and Treatment of Cancer scoring. Survival analysis was performed using the Kaplan-Meier method. Differences in late toxicity and dose parameters between both groups were compared. Prognostic factors for survival and late toxicity were assessed using regression analyses. RESULTS: Patients in the modified group developed late xerostomia and dysphagia less frequently than those in the comparison group did (P < 0.001). The mean dose (Dmean) and V26 of parotid glands; Dmean and V39 of submandibular glands; and Dmean of sublingual glands, oral cavity, larynx, and superior, middle, and lower pharyngeal constrictor muscles were lower in the modified group than those in the comparison group (all P < 0.001). Both groups had no significant differences in overall, local recurrence-free, distant metastasis-free, or progression-free survival. The Dmean of the parotid and sublingual glands was a risk factor for xerostomia. The Dmean of the parotid and sublingual glands and middle pharyngeal constrictor muscle was a risk factor for dysphagia. CONCLUSIONS: Level IIb optimisation in NPC patients who meet certain criteria specially the exclusion of positive retropharyngeal nodes treated with intensity-modulated radiotherapy has the potential to better protect the salivary and swallowing structures, decreasing the development of late radiation-induced xerostomia and dysphagia while maintaining long-term survival.


Asunto(s)
Trastornos de Deglución , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Radioterapia de Intensidad Modulada , Xerostomía , Humanos , Trastornos de Deglución/etiología , Masculino , Xerostomía/etiología , Femenino , Carcinoma Nasofaríngeo/radioterapia , Carcinoma Nasofaríngeo/complicaciones , Carcinoma Nasofaríngeo/patología , Persona de Mediana Edad , Radioterapia de Intensidad Modulada/efectos adversos , Radioterapia de Intensidad Modulada/métodos , Estudios Retrospectivos , Estudios de Seguimiento , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/complicaciones , Adulto , Anciano , Traumatismos por Radiación/etiología , Traumatismos por Radiación/prevención & control , Deglución , Glándulas Salivales/efectos de la radiación , Glándulas Salivales/patología , Glándulas Salivales/diagnóstico por imagen , Dosificación Radioterapéutica , Pronóstico , Adulto Joven
20.
BMC Cancer ; 24(1): 7, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167018

RESUMEN

OBJECTION: Investigating the key genes and mechanisms that influence stemness in lung adenocarcinoma. METHODS: First, consistent clustering analysis was performed on lung adenocarcinoma patients using stemness scoring to classify them. Subsequently, WGCNA was utilized to identify key modules and hub genes. Then, machine learning methods were employed to screen and identify the key genes within these modules. Lastly, functional analysis of the key genes was conducted through cell scratch assays, colony formation assays, transwell migration assays, flow cytometry cell cycle analysis, and xenograft tumor models. RESULTS: First, two groups of patients with different stemness scores were obtained, where the high stemness score group exhibited poor prognosis and immunotherapy efficacy. Next, LASSO regression analysis and random forest regression were employed to identify genes (PBK, RACGAP1) associated with high stemness scores. RACGAP1 was significantly upregulated in the high stemness score group of lung adenocarcinoma and closely correlated with clinical pathological features, poor overall survival (OS), recurrence-free survival (RFS), and unfavorable prognosis in lung adenocarcinoma patients. Knockdown of RACGAP1 suppressed the migration, proliferation, and tumor growth of cancer cells. CONCLUSION: RACGAP1 not only indicates poor prognosis and limited immunotherapy benefits but also serves as a potential targeted biomarker influencing tumor stemness.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Ciclo Celular/genética , División Celular , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA