Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 63(12): 5727-5733, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38470094

RESUMEN

Nickel-rich layered oxides are envisaged as one of the most promising alternative cathode materials for lithium-ion batteries, considering their capabilities to achieve ultrahigh energy density at an affordable cost. Nonetheless, with increasing Ni content in the cathodes comes a severe extent of Ni4+ redox side reactions on the interface, leading to fast capacity decay and structural stability fading over extended cycles. Herein, dual additives of bis(vinylsulfonyl)methane (BVM) and lithium difluorophosphate (LiDFP) are adopted to synergistically generate the F-, P-, and S-rich passivation layer on the cathode, and the Ni4+ activity and dissolution at high voltage are restricted. The sulfur-rich layer formed by the polymerization of BVM, combined with the Li3PO4 and LiF phases derived from LiDFP, alleviates the problems of increased impedance, cracks, and an irreversible H2-H3 phase transition. Consequently, the Ni-rich LiNixM1-xO2 (x > 0.95) button half-cell cycled in LiDFP + BVM electrolyte exhibits a significant discharging capacity of 181.4 mAh g-1 at 1 C (1 C = 200 mA g-1) with retention of 83.7% after 100 cycles, surpassing the performance of the commercial electrolyte (160.7 mAh g-1) with retention of 53.3%. Remarkably, the NCM95||graphite pouch cell exhibits a remarkable capacity retention of 95.5% after 200 cycles. This work inspires the rational design of electrolyte additives for ultrahigh-energy batteries with nickel-rich layered oxide cathodes.

2.
Inorg Chem ; 62(37): 15138-15147, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37676812

RESUMEN

Carbon-supported Pd-based clusters are one of the most promising anodic catalysts for ethanol oxidation reaction (EOR) due to their encouraging activity and practical applications. However, unclear growth mechanism of Pd-based clusters on the carbon-based materials has hindered their extensive applications. Herein, we first introduce multi-void spherical PdBi cluster/carbon cloth (PdBi/CC) composites by an electrodeposition routine. The growth mechanism of PdBi clusters on the CC supports has been systemically investigated by evaluating the selected samples and tuning their compositions, which involve the big difference in standard redox potential between Pd2+/Pd and Bi3+/Bi and easy adsorption of Bi3+ on the surface of Pd-rich seeds. Benefitting from the ensembles of many nanocrystal subunits, multi-void spherical PdBi clusters can present collective properties and novel functionalities. In addition, the outstanding characteristics of CC supports enable PdBi clusters with stable nanostructures. Thanks to the unique structure, Pd20Bi/CC catalysts manifest higher EOR activity and better stability compared to Pd/CC. Systematic characterizations and a series of CO poisoning tests further confirm that the dramatically enhanced EOR activity and stability can be attributed to the incorporation of Bi species and the strong coupling of the structure between PdBi clusters and CC supports.

3.
Front Chem ; 10: 914930, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35755257

RESUMEN

Lithium-ion batteries (LIBs) have attracted great attention as an advanced power source and energy-storage device for years due to their high energy densities. With rapid growing demands for large reversible capacity, high safety, and long-period stability of LIBs, more explorations have been focused on the development of high-performance cathode materials in recent decades. Carbon-based materials are one of the most promising cathode modification materials for LIBs due to their high electrical conductivity, large surface area, and structural mechanical stability. This feature review systematically outlines the significant advances of carbon-based materials for LIBs. The commonly used synthetic methods and recent research advances of cathode materials with carbon coatings are first represented. Then, the recent achievements and challenges of carbon-based materials in LiCoO2, LiNixCoyAl1-x-yO2, and LiFePO4 cathode materials are summarized. In addition, the influence of different carbon-based nanostructures, including CNT-based networks and graphene-based architectures, on the performance of cathode materials is also discussed. Finally, we summarize the challenges and perspectives of carbon-based materials on the cathode material design for LIBs.

4.
ACS Nano ; 15(8): 13847-13856, 2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34382785

RESUMEN

The sluggish solid-solid conversion kinetics from Li2S4 to Li2S during discharge is considered the main problem for cryogenic Li-S batteries. Herein, an all-liquid-phase reaction mechanism, where all the discharging intermediates are dissolved in the functional thioether-based electrolyte, is proposed to significantly enhance the kinetics of Li-S battery chemistry at low temperatures. A fast liquid-phase reaction pathway thus replaces the conventional slow solid-solid conversion route. Spectral investigations and molecular dynamics simulations jointly elucidate the greatly enhanced kinetics due to the highly decentralized state of solvated intermediates in the electrolyte. Overall, the battery brings an ultrahigh specific capacity of 1563 mAh g-1sulfur in the cathode at -60 °C. This work provides a strategy for developing cryogenic Li-S batteries.

5.
Chem Commun (Camb) ; 56(64): 9138-9141, 2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32644079

RESUMEN

In this work, novel insights into the influence of different nanocrystal structures on the electrocatalytic oxidation of methanol are reported. Herein, we have successfully prepared high-yield PtPb nanoplates in the diethylene glycol (DEG) solvent. The as-obtained PtPb nanoplates with a large surface area of the (102) facet show higher MOR activity and superior durability in alkaline electrolyte compared with both zero-dimensional PtPb nanoparticles and commercial Pt/C. Further chronoamperometric (CA) measurements and discrete Fourier transform (DFT) calculations indicate that the PtPb nanoplates possess much better operation durability and CO tolerance due to the negative adsorption energy of the (102) facet.

6.
J Vis Exp ; (146)2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-31033939

RESUMEN

Here, we demonstrate a method of coating ferromagnetic La0.67Sr0.33MnO3 (LSMO) nanoparticles on (001) SrTiO3 (STO) single-crystal substrates by radio frequency (RF) magnetron sputtering. LSMO nanoparticles were deposited with diameters from 10 to 20 nm and heights between 20 and 50 nm. At the same time, (Gd) Ba2Cu3O7-δ ((Gd) BCO) films were fabricated on both undecorated and LSMO nanoparticle decorated STO substrates using RF magnetron sputtering. This report also describes the properties of GdBa2Cu3O7-δ/ La0.67Sr0.33MnO3 quasi-bilayer films structures (e.g., crystalline phase, morphology, chemical composition); magnetization, magneto-transport, and superconducting transport properties were also evaluated.


Asunto(s)
Imanes , Óxidos/química , Ondas de Radio , Estroncio/química , Titanio/química , Cristalización , Propiedades de Superficie , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA