RESUMEN
Neuronal signals have emerged as pivotal regulators of group 2 innate lymphoid cells (ILC2s) that regulate tissue homeostasis and allergic inflammation. The molecular pathways underlying the neuronal regulation of ILC2 responses in lungs remain to be fully elucidated. Here, we found that the abundance of neurotransmitter dopamine was negatively correlated with circulating ILC2 numbers and positively associated with pulmonary function in humans. Dopamine potently suppressed lung ILC2 responses in a DRD1-receptor-dependent manner. Genetic deletion of Drd1 or local ablation of dopaminergic neurons augmented ILC2 responses and allergic lung inflammation. Transcriptome and metabolic analyses revealed that dopamine impaired the mitochondrial oxidative phosphorylation (OXPHOS) pathway in ILC2s. Augmentation of OXPHOS activity with oltipraz antagonized the inhibitory effect of dopamine. Local administration of dopamine alleviated allergen-induced ILC2 responses and airway inflammation. These findings demonstrate that dopamine represents an inhibitory regulator of ILC2 responses in allergic airway inflammation.
Asunto(s)
Inmunidad Innata , Neumonía , Humanos , Dopamina/metabolismo , Linfocitos , Pulmón/metabolismo , Neumonía/metabolismo , Inflamación/metabolismo , Interleucina-33/metabolismoRESUMEN
Diabetic kidney disease (DKD), a major microvascular complication of diabetes, is characterized by its complex pathogenesis, high risk of chronic renal failure, and lack of effective diagnosis and treatment methods. GSK3ß (glycogen synthase kinase 3ß), a highly conserved threonine/serine kinase, was found to activate glycogen synthase. As a key molecule of the glucose metabolism pathway, GSK3ß participates in a variety of cellular activities and plays a pivotal role in multiple diseases. However, these effects are not only mediated by affecting glucose metabolism. This review elaborates on the role of GSK3ß in DKD and its damage mechanism in different intrinsic renal cells. GSK3ß is also a biomarker indicating the progression of DKD. Finally, the protective effects of GSK3ß inhibitors on DKD are also discussed.
Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Glucógeno Sintasa Quinasa 3 beta , Humanos , Nefropatías Diabéticas/tratamiento farmacológico , Glucosa/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Riñón/metabolismoRESUMEN
The composition and physiochemical properties of the solid electrolyte interphase (SEI) significantly impact the electrochemical cyclability of the Li metal. Here, we introduce a trace dual-salt electrolyte additive (TDEA) that accelerates LiF production from FEC decomposition and improves the LiF distribution, resulting in earlier LiF precipitation and the formation of a LiF-rich SEI on the Li anode. TDEA at a millimolar-level concentration was found to alter the morphology of deposited Li, suppress Li dendrite formation, and increase the cycling time and operating current density for Li anodes. Liâ¥NCM811 full cells using TDEA-based electrolytes exhibited approximately two times longer lifespan than those without additives. Additionally, the TDEA-based electrolytes enabled a high energy density of 347 Wh kg-1 for 500-mAh pouch cells, maintaining stable cycling over 180 cycles under stringent conditions (N/P = 1.26 and E/C = 2.2 g A h-1). Our findings suggest that the proposed TDEA strategy offers a promising path to achieving high-performance Li metal batteries.
RESUMEN
Group 2 innate lymphoid cells (ILC2s) play critical roles in driving the pathogenesis of allergic airway inflammation. The mechanisms underlying the regulation of ILC2s remain to be fully understood. Here, we identified neuropilin-1 (NRP1) as a surface marker of ILC2s in response to IL-33 stimulation. NRP1 was abundantly expressed in ILC2s from lung under steady state, which was significantly reduced upon IL-33 stimulation. ILC2s with high expression of NRP1 (NRP1high) displayed lower response to IL-33, as compared with NRP1low ILC2s. Transcriptional profiling and flow cytometric analysis showed that downregulation of AKT-mTOR signalling participated in the diminished functionality of NRP1high ILC2s. These observations revealed a potential role of NRP1 in ILC2s responses under allergic inflammatory condition.
Asunto(s)
Regulación hacia Abajo , Inmunidad Innata , Interleucina-33 , Linfocitos , Neuropilina-1 , Transducción de Señal , Interleucina-33/metabolismo , Interleucina-33/inmunología , Animales , Neuropilina-1/metabolismo , Neuropilina-1/genética , Ratones , Linfocitos/inmunología , Linfocitos/metabolismo , Pulmón/inmunología , Pulmón/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones Endogámicos C57BLRESUMEN
A new and efficient synthesis of rubriflordilactone A has been realized. The key transformations include the following: (1) an intramolecular Prins cyclization to establish the seven-membered ring containing two contiguous stereocenters; (2) a Mukaiyama hydration/oxa-Michael cascade to construct the B-ring; and (3) an unprecedented stereocontrol intermolecular o-QM type [4 + 2]-cycloaddition to rapidly assemble core structure of rubriflordilactone A.
RESUMEN
Most currently available terahertz (THz) narrowband filters contain a metal and a substrate, which introduce absorption loss and spectral fluctuations caused by a Fabry-Perot interference in substrates. To address these issues, we employ quasi-bound states in the continuum (BICs) for the design and realization of a substrate-free all-dielectric THz transmissive narrowband filter. Under oblique incidence, the symmetry-protected BICs break and collapse into high-Q transmissive quasi-BIC modes, thereby achieving narrowband filtering. The filter not only minimizes energy loss but also demonstrates a smooth filtering response without an interferential spectral fluctuation associated with the substrate. An experimental high Q value of â¼127 at 4.1â THz with a broad sideband of â¼1.5â THz with transmittance below 10% is achieved.
RESUMEN
Two-dimensional (2D) altermagnetism was recently proposed to be attainable in twisted antiferromagnetic bilayers providing an experimentally feasible approach to realize it in 2D materials. Nevertheless, a comprehensive understanding of the mechanism governing the appearance of altermagnetism in bilayer systems is still absent. In the present Letter, we address this gap by introducing a general stacking theory (GST) as a key condition for the emergence of altermagnetism in bilayer systems. The GST provides straightforward criteria to predict whether a bilayer demonstrates altermagnetic spin splitting, solely based on the layer groups of the composing monolayers. According to the GST, only seven point groups of bilayers facilitate the emergence of altermagnetism. It is revealed that, beyond the previously proposed antiferromagnetic twisted Van der Waals stacking, altermagnetism can even emerge in bilayers formed through the symmetrically restricted direct stacking of two monolayers. By combining the GST and first-principles calculations, we present illustrative examples of bilayers demonstrating altermagnetism. Our work establishes a robust framework for designing diverse bilayer systems with altermagnetism, thereby opening up new avenues for both fundamental research and practical applications in this field.
RESUMEN
A visible-light-initiated energy-transfer enabled radical cyclization for the divergent synthesis of polycyclic γ-sultine derivatives has been developed. The reaction provides an alternative and expeditious access to benzofused γ-sultine frameworks, the analogues of γ-lactones and γ-sultones, and features good functional group compatibility, mild reaction conditions and excellent diastereoselectivity. The robustness and application potential of this method have also been successfully displayed by two gram-scale reactions and the synthesis of polycyclic sultones. Mechanistic studies indicated the transformations through a possible energy-transfer enabled intramolecular radical homolytic substitution or hydrogen atom transfer process mainly.
RESUMEN
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive myeloid malignancy which characteristically expresses an atypical phenotype including CD123+, CD56+, and CD4+. We are aimed to investigate the clinical and prognostic characteristics of AML patients exhibiting BPDCN-like immunophenotype and provide additional insights for risk stratification of AML. A total of 241 newly diagnosed AML patients were enrolled in this retrospective study and categorized into BPDCN-like positive (n = 125)/negative (n = 116) groups, determined by the present with CD123+ along with either CD56+ or CD4+, or both. Subsequently, an analysis was conducted to examine the general clinical characteristics, genetic profiles, and prognosis of the two respective groups. Patients with BPDCN-like immunophenotype manifested higher frequencies of acute myelomonocytic leukemia and acute monoblastic leukemia. Surprisingly, the presence of the BPDCN-like immunophenotype exhibited an inverse relationship with CEBPA bZIP mutation. Notably, patients with BPDCN-like phenotype had both worse OS and EFS compared to those without BPDCN-like phenotype. In the CN-AML subgroups, the BPDCN-like phenotype was associated with worse EFS. Similarly, a statistically significant disparity was observed in both OS and EFS within the favorable-risk subgroup, while only OS was significant within the adverse-risk subgrouMoreover, patients possessing favorable-risk genetics without BPDCN-like phenotype had the longest survival, whereas those who had both adverse-risk genetics and BPDCN-like phenotype exhibited the worst survival. Our study indicated that BPDCN-like phenotype negatively associated with CEBPA bZIP mutation and revealed a significantly poor prognosis in AML. Moreover, the 2022 ELN classification, in combination with the BPDCN-like phenotype, may better distinguish between different risk groups.
Asunto(s)
Leucemia Mieloide Aguda , Trastornos Mieloproliferativos , Neoplasias Cutáneas , Humanos , Estudios Retrospectivos , Subunidad alfa del Receptor de Interleucina-3 , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Pronóstico , Enfermedad Aguda , Trastornos Mieloproliferativos/patología , Neoplasias Cutáneas/patología , Células Dendríticas/patología , Mutación , Proteínas Potenciadoras de Unión a CCAAT/genéticaRESUMEN
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a critical tumor suppressor protein that regulates various biological processes such as cell proliferation, apoptosis, and inflammatory responses by controlling the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PI3K/AKT) signaling pathway. PTEN plays a crucial role in the pathogenesis of rheumatoid arthritis (RA). Loss of PTEN may contribute to survival, proliferation, and pro-inflammatory cytokine release of fibroblast-like synoviocytes (FLS). Also, persistent PI3K signaling increases myeloid cells' osteoclastic potential, enhancing localized bone destruction. Recent studies have shown that the expression of PTEN protein in the synovial lining of RA patients with aggressive FLS is minimal. Experimental upregulation of PTEN protein expression could reduce the damage caused by RA. Nonetheless, a complete comprehension of aberrant PTEN drives RA progression and its interactions with other crucial molecules remains elusive. This review is dedicated to promoting a thorough understanding of the signaling mechanisms of aberrant PTEN in RA and aims to furnish pertinent theoretical support for forthcoming endeavors in both basic and clinical research within this domain.
Asunto(s)
Artritis Reumatoide , Fosfohidrolasa PTEN , Humanos , Artritis Reumatoide/patología , Artritis Reumatoide/metabolismo , Artritis Reumatoide/genética , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Animales , Transducción de SeñalRESUMEN
BACKGROUND: The outcome of extramedullary infiltration (EMI) in pediatric acute myeloid leukemia (AML) is controversial, and little is known about the implications of stem cell transplantation (SCT) and gemtuzumab ozogamicin (GO) treatment on patients with EMI. METHODS: We retrieved the clinical data of 713 pediatric patients with AML from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) dataset, and analyzed the clinical and prognostic characteristics of patients with EMI at diagnosis and relapse. RESULTS: A total of 123 patients were identified to have EMI at diagnosis and 64 presented with EMI at relapse. The presence of EMI was associated with age ≤2 years, M5 morphology, abnormal karyotype, and KMT2A rearrangements. Hyperleukocytosis and complex karyotype were more prevalent in patients with EMI at relapse. Additionally, patients with EMI at diagnosis had a reduced incidence of FLT3 ITD-/NPM1+, whereas those with EMI at relapse displayed a lower frequency of FLT3 ITD+. Patients with EMI at diagnosis exhibited a lower complete remission (CR) rate at the end of Induction Course 1 and higher relapse incidence. Importantly, EMI at diagnosis independently predicted both shorter event-free survival (EFS) and overall survival (OS). Regarding relapse patients, the occurrence of EMI at relapse showed no impact on OS. However, relapse patients with myeloid sarcoma (MS)/no central nervous system (CNS) exhibited poorer OS compared to those with CNS/no MS. Furthermore, regarding patients with EMI at diagnosis, SCT failed to improve the survival, whereas GO treatment potentially enhanced OS. CONCLUSION: EMI at diagnosis is an independent adverse prognostic risk factor for pediatric AML, and GO treatment potentially improves survival for patients with EMI at diagnosis.
Asunto(s)
Gemtuzumab , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/patología , Niño , Femenino , Masculino , Preescolar , Lactante , Gemtuzumab/uso terapéutico , Pronóstico , Adolescente , Nucleofosmina , Infiltración Leucémica/patología , Tasa de Supervivencia , Estudios de SeguimientoRESUMEN
Axially chiral C2-arylquinoline has been successfully constructed via asymmetric heteroannulation of alkynes catalyzed by chiral phosphoric acid with high yield and high enantioselectivity. Inspired by this intriguing work, theoretical calculations have been carried out, and the detailed reaction mechanism has been elaborated, in which the whole reaction can be divided into steps including hydrogen transfer, C-N bonding, annulation reaction and the final dehydration processes. The initial hydrogen-transfer reaction has two possible pathways, while the subsequent C-N bonding process has eight possible pathways. Then, after the annulation reaction and the final dehydration processes, the major product and byproduct were formed. QTAIM and IGMH analyses were used to illustrate the role of weak intermolecular interactions in the catalytic process, and the distortion/interaction and EDA analyses provided a deeper understanding of the origin of enantioselectivity. The calculated results are consistent with the experimental results. This work would provide valuable insights into asymmetric reactions catalyzed by chiral phosphoric acid.
RESUMEN
Necrotizing enterocolitis (NEC) is a common disorder in premature infants that is characterized by hyperinflammation and severe necrosis in the intestine. The pathogenesis of NEC remains to be elucidated. In this study, we demonstrate that adenosine, a metabolite more abundant in infants than in adults, plays an important role in the prevention of NEC. Administration of adenosine or its analog, adenosine-5'-N-ethyluronamide (NECA), dramatically relieved the severity of NEC in neonatal mice. Meanwhile, adenosine treatment significantly enhanced the immunosuppressive function, antibacterial activity, and migration of myeloid-derived suppressor cells (MDSCs). However, depletion of MDSCs or inhibition of their migration using the CXCR2 inhibitor SB225002 almost completely abrogated the protective effect of adenosine on NEC. Mechanistic studies showed that MDSCs in newborns expressed abundant adenosine receptor A2B (A2BR) that elicits intracellular cAMP signaling and its downstream target NF-κB. Importantly, intestinal tissues from patients with NEC showed significantly lower infiltration of A2BR-positive MDSCs than those from healthy donors. These observations revealed that adenosine-induced MDSCs represent an essential immune axis for intestinal homeostasis in newborns.
Asunto(s)
Enterocolitis Necrotizante , Células Supresoras de Origen Mieloide , Adenosina , Animales , Enterocolitis Necrotizante/tratamiento farmacológico , Enterocolitis Necrotizante/metabolismo , Humanos , Inmunosupresores , Recién Nacido , Ratones , Células Supresoras de Origen Mieloide/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/fisiologíaRESUMEN
BACKGROUND: As an initial treatment for primary membranous nephropathy (PMN), there remains a significant proportion of patients for whom rituximab is not fully effective. Here, we aimed to assess the effectiveness and safety of obinutuzumab as initial treatment in patients with PMN. METHODS: In this observational case series, patients diagnosed with PMN and treated with obinutuzumab as initial treatment were included. Treatment response was assessed by 24-h urine total protein (24 h UTP) and serum albumin, and immunologic remission was assessed by phospholipase A2 receptor (PLA2R) antibodies. RESULTS: Twelve patients with PMN receiving obinutuzumab as initial treatment were included. Over 6 months, a statistically significant reduction in 24 h UTP levels (p = 0.003) and an increase in serum albumin levels were observed (p < 0.001). By the 6-month follow-up, two patients (16.7%) achieved complete remission, eight (66.6%) reached partial remission, and two (16.7%) showed no remission. Immunological remission was observed in 44.4% of evaluable patients (n = 9) after 3 months, increasing to 100% (6/6) at 6 months. Except for cases 1, 2, and 3, the total B cell counts in the remaining patients fell to less than 5 cells/µL before the administration of the second dose of obinutuzumab, including seven patients with counts as low as 0 cells/µL. Mild to moderate treatment-related adverse events (TRAEs) were reported in 58.3% (7/12) of the patients. No serious TRAEs were reported. CONCLUSIONS: Obinutuzumab demonstrates promising potential as an initial treatment for PMN, with good effectiveness and a manageable safety profile. Further large-scale prospective studies are needed to confirm these findings.
Asunto(s)
Anticuerpos Monoclonales Humanizados , Glomerulonefritis Membranosa , Receptores de Fosfolipasa A2 , Inducción de Remisión , Humanos , Glomerulonefritis Membranosa/tratamiento farmacológico , Glomerulonefritis Membranosa/inmunología , Glomerulonefritis Membranosa/diagnóstico , Masculino , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/efectos adversos , Femenino , Persona de Mediana Edad , Resultado del Tratamiento , Adulto , Anciano , Receptores de Fosfolipasa A2/inmunología , Proteinuria/tratamiento farmacológico , Factores de Tiempo , Albúmina Sérica Humana/análisisRESUMEN
Single-cell protein (SCP) is a vital supplement for animal protein feed. This study utilized biogas slurry and sugarcane molasses to ferment Nectaromyces rattus for the production of SCP. The optimal batch fermentation conditions were obtained in a 5L jar with a tank pressure of 0.1 MPa, an initial speed of 300 rpm, and an inoculum volume of 30%. The highest cell dry weight concentrations of the fed-batch fermentation without reflux and the fed-batch fermentation with reflux were 46.33 g/L and 29.71 g/L, respectively. The nitrogen conversion rates (47.05% and 44.12%) and the cell yields of total organic carbon (1 g/g and 1.17 g/g) of both fermentation modes were compared. The SCP contained 42.32% amino acids. Its high concentrations of potassium (19859.96 mg/kg) and phosphorus (7310.44 mg/kg) present a novel approach for the extraction of these essential nutrients from biogas slurry. The enrichment of K was related to the H+ efflux and sugar transport.
Asunto(s)
Biocombustibles , Melaza , Potasio , FermentaciónRESUMEN
The Masquelet technique, also known as the induced membrane technique, is a surgical technique for repairing large bone defects based on the use of a membrane generated by a foreign body reaction for bone grafting. This technique is not only simple to perform, with few complications and quick recovery, but also has excellent clinical results. To better understand the mechanisms by which this technique promotes bone defect repair and the factors that require special attention in practice, we examined and summarized the relevant research advances in this technique by searching, reading, and analysing the literature. Literature show that the Masquelet technique may promote the repair of bone defects through the physical septum and molecular barrier, vascular network, enrichment of mesenchymal stem cells, and high expression of bone-related growth factors, and the repair process is affected by the properties of spacers, the timing of bone graft, mechanical environment, intramembrane filling materials, artificial membrane, and pharmaceutical/biological agents/physical stimulation.
RESUMEN
The artificial photosynthesis of H2O2 from water and oxygen using semiconductor photocatalysts is attracting increasing levels of attention owing to its green, environmentally friendly, and energy-saving characteristics. Although covalent organic frameworks (COFs) are promising materials for promoting photocatalytic H2O2 production owing to their structural and functional diversity, they typically suffer from low charge-generation and -transfer efficiencies as well as rapid charge recombination, which restricts their use as catalysts for photocatalytic H2O2 production. Herein, we report a strategy for anchoring vinyl moieties to a COF skeleton to facilitate charge separation and migration, thereby promoting photocatalytic H2O2 generation. This vinyl-group-bearing COF photocatalyst exhibits a H2O2-production rate of 84.5â µmol h-1 (per 10â mg), which is ten-times higher than that of the analog devoid of vinyl functionality and superior to most reported COF photocatalysts. Both experimental and theoretical studies provide deep insight into the origin of the improved photocatalytic performance. These findings are expected to facilitate the rational design and modification of organic semiconductors for use in photocatalytic applications.
RESUMEN
Memristors are essential components of neuromorphic systems that mimic the synaptic plasticity observed in biological neurons. In this study, a novel approach employing one-dimensional covalent organic framework (1D COF) films was explored to enhance the performance of memristors. The unique structural and electronic properties of two 1D COF films (COF-4,4'-methylenedianiline (MDA) and COF-4,4'-oxydianiline (ODA)) offer advantages for multilevel resistive switching, which is a key feature in neuromorphic computing applications. By further introducing a TiO2 layer on the COF-ODA film, a built-in electric field between the COF-TiO2 interfaces could be generated, demonstrating the feasibility of utilizing COFs as a platform for constructing memristors with tunable resistive states. The 1D nanochannels of these COF structures contributed to the efficient modulation of electrical conductance, enabling precise control over synaptic weights in neuromorphic circuits. This study also investigated the potential of these COF-based memristors to achieve energy-efficient and high-density memory devices.
RESUMEN
The electrolytes for lithium metal batteries (LMBs) are plagued by a low Li+ transference number (T+) of conventional lithium salts and inability to form a stable solid electrolyte interphase (SEI). Here, we synthesized a self-folded lithium salt, lithium 2-[2-(2-methoxy ethoxy)ethoxy]ethanesulfonyl(trifluoromethanesulfonyl) imide (LiETFSI), and comparatively studied with its structure analogue, lithium 1,1,1-trifluoro-N-[2-[2-(2-methoxyethoxy)ethoxy)]ethyl]methanesulfonamide (LiFEA). The special anion chemistry imparts the following new characteristics: i) In both LiFEA and LiETFSI, the ethylene oxide moiety efficiently captures Li+, resulting in a self-folded structure and high T+ around 0.8. ii) For LiFEA, a Li-N bond (2.069â Å) is revealed by single crystal X-ray diffraction, indicating that the FEA anion possesses a high donor number (DN) and thus an intensive interphase "self-cleaning" function for an ultra-thin and compact SEI. iii) Starting from LiFEA, an electron-withdrawing sulfone group is introduced near the N atom. The distance of Li-N is tuned from 2.069â Å in LiFEA to 4.367â Å in LiETFSI. This alteration enhances ionic separation, achieves a more balanced DN, and tunes the self-cleaning intensity for a reinforced SEI. Consequently, the fast charging/discharging capability of LMBs is progressively improved. This rationally tuned anion chemistry reshapes the interactions among Li+, anions, and solvents, presenting new prospects for advanced LMBs.