RESUMEN
Although the gut microbiota can influence central nervous system (CNS) autoimmune diseases, the contribution of the intestinal epithelium to CNS autoimmunity is less clear. Here, we showed that intestinal epithelial dopamine D2 receptors (IEC DRD2) promoted sex-specific disease progression in an animal model of multiple sclerosis. Female mice lacking Drd2 selectively in intestinal epithelial cells showed a blunted inflammatory response in the CNS and reduced disease progression. In contrast, overexpression or activation of IEC DRD2 by phenylethylamine administration exacerbated disease severity. This was accompanied by altered lysozyme expression and gut microbiota composition, including reduced abundance of Lactobacillus species. Furthermore, treatment with N2-acetyl-L-lysine, a metabolite derived from Lactobacillus, suppressed microglial activation and neurodegeneration. Taken together, our study indicates that IEC DRD2 hyperactivity impacts gut microbial abundances and increases susceptibility to CNS autoimmune diseases in a female-biased manner, opening up future avenues for sex-specific interventions of CNS autoimmune diseases.
Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Esclerosis Múltiple , Masculino , Femenino , Ratones , Animales , Esclerosis Múltiple/metabolismo , Modelos Animales de Enfermedad , Transducción de Señal , Progresión de la Enfermedad , Receptores DopaminérgicosRESUMEN
Replication protein A (RPA) is a major regulator of eukaryotic DNA metabolism involved in multiple essential cellular processes. Maintaining appropriate RPA dynamics is crucial for cells to prevent RPA exhaustion, which can lead to replication fork breakage and replication catastrophe. However, how cells regulate RPA availability during unperturbed replication and in response to stress has not been well elucidated. Here, we show that HNRNPA2B1SUMO functions as an endogenous inhibitor of RPA during normal replication. HNRNPA2B1SUMO associates with RPA through recognizing the SUMO-interacting motif (SIM) of RPA to inhibit RPA accumulation at replication forks and impede local ATR activation. Declining HNRNPA2SUMO induced by DNA damage will release nuclear soluble RPA to localize to chromatin and enable ATR activation. Furthermore, we characterize that HNRNPA2B1 hinders homologous recombination (HR) repair via limiting RPA availability, thus conferring sensitivity to PARP inhibitors. These findings establish HNRNPA2B1 as a critical player in RPA-dependent surveillance networks.
Asunto(s)
Replicación del ADN , Proteína de Replicación A , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Replicación del ADN/genética , Sumoilación , Daño del ADN , Cromatina/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismoRESUMEN
Repair of DNA double-strand breaks (DSBs) elicits three-dimensional (3D) chromatin topological changes. A recent finding reveals that 53BP1 assembles into a 3D chromatin topology pattern around DSBs. How this formation of a higher-order structure is configured and regulated remains enigmatic. Here, we report that SLFN5 is a critical factor for 53BP1 topological arrangement at DSBs. Using super-resolution imaging, we find that SLFN5 binds to 53BP1 chromatin domains to assemble a higher-order microdomain architecture by driving damaged chromatin dynamics at both DSBs and deprotected telomeres. Mechanistically, we propose that 53BP1 topology is shaped by two processes: (1) chromatin mobility driven by the SLFN5-LINC-microtubule axis and (2) the assembly of 53BP1 oligomers mediated by SLFN5. In mammals, SLFN5 deficiency disrupts the DSB repair topology and impairs non-homologous end joining, telomere fusions, class switch recombination, and sensitivity to poly (ADP-ribose) polymerase inhibitor. We establish a molecular mechanism that shapes higher-order chromatin topologies to safeguard genomic stability.
Asunto(s)
Cromatina , Reparación del ADN , Animales , Cromatina/genética , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Mamíferos/metabolismo , Proteínas de Unión a Telómeros/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteínas de Ciclo Celular/metabolismoRESUMEN
DNA-protein crosslinks (DPCs) are highly toxic DNA lesions that threaten genomic integrity. Recent findings highlight that SPRTN, a specialized DNA-dependent metalloprotease, is a central player in proteolytic cleavage of DPCs. Previous studies suggest that SPRTN deubiquitination is important for its chromatin association and activation. However, the regulation and consequences of SPRTN deubiquitination remain unclear. Here we report that, in response to DPC induction, the deubiquitinase VCPIP1/VCIP135 is phosphorylated and activated by ATM/ATR. VCPIP1, in turn, deubiquitinates SPRTN and promotes its chromatin relocalization. Deubiquitination of SPRTN is required for its subsequent acetylation, which promotes SPRTN relocation to the site of chromatin damage. Furthermore, Vcpip1 knockout mice are prone to genomic instability and premature aging. We propose a model where two sequential post-translational modifications (PTMs) regulate SPRTN chromatin accessibility to repair DPCs and maintain genomic stability and a healthy lifespan.
Asunto(s)
Envejecimiento/genética , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Acetilación , Envejecimiento/metabolismo , Animales , Línea Celular , Daño del ADN , Proteínas de Unión al ADN/genética , Enzimas Desubicuitinizantes/metabolismo , Endopeptidasas/metabolismo , Femenino , Inestabilidad Genómica , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Dominios Proteicos , Procesamiento Proteico-Postraduccional , UbiquitinaciónRESUMEN
The Moon has a magmatic and thermal history that is distinct from that of the terrestrial planets1. Radioisotope dating of lunar samples suggests that most lunar basaltic magmatism ceased by around 2.9-2.8 billion years ago (Ga)2,3, although younger basalts between 3 Ga and 1 Ga have been suggested by crater-counting chronology, which has large uncertainties owing to the lack of returned samples for calibration4,5. Here we report a precise lead-lead age of 2,030 ± 4 million years ago for basalt clasts returned by the Chang'e-5 mission, and a 238U/204Pb ratio (µ value)6 of about 680 for a source that evolved through two stages of differentiation. This is the youngest crystallization age reported so far for lunar basalts by radiometric dating, extending the duration of lunar volcanism by approximately 800-900 million years. The µ value of the Chang'e-5 basalt mantle source is within the range of low-titanium and high-titanium basalts from Apollo sites (µ value of about 300-1,000), but notably lower than those of potassium, rare-earth elements and phosphorus (KREEP) and high-aluminium basalts7 (µ value of about 2,600-3,700), indicating that the Chang'e-5 basalts were produced by melting of a KREEP-poor source. This age provides a pivotal calibration point for crater-counting chronology in the inner Solar System and provides insight on the volcanic and thermal history of the Moon.
RESUMEN
Mare volcanics on the Moon are the key record of thermo-chemical evolution throughout most of lunar history1-3. Young mare basalts-mainly distributed in a region rich in potassium, rare-earth elements and phosphorus (KREEP) in Oceanus Procellarum, called the Procellarum KREEP Terrane (PKT)4-were thought to be formed from KREEP-rich sources at depth5-7. However, this hypothesis has not been tested with young basalts from the PKT. Here we present a petrological and geochemical study of the basalt clasts from the PKT returned by the Chang'e-5 mission8. These two-billion-year-old basalts are the youngest lunar samples reported so far9. Bulk rock compositions have moderate titanium and high iron contents with KREEP-like rare-earth-element and high thorium concentrations. However, strontium-neodymium isotopes indicate that these basalts were derived from a non-KREEP mantle source. To produce the high abundances of rare-earth elements and thorium, low-degree partial melting and extensive fractional crystallization are required. Our results indicate that the KREEP association may not be a prerequisite for young mare volcanism. Absolving the need to invoke heat-producing elements in their source implies a more sustained cooling history of the lunar interior to generate the Moon's youngest melts.
RESUMEN
Hypoxia, which occurs during tumor growth, triggers complex adaptive responses in which peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) plays a critical role in mitochondrial biogenesis and oxidative metabolism. However, how PGC-1α is regulated in response to oxygen availability remains unclear. We demonstrated that lysine demethylase 3A (KDM3A) binds to PGC-1α and demethylates monomethylated lysine (K) 224 of PGC-1α under normoxic conditions. Hypoxic stimulation inhibits KDM3A, which has a high KM of oxygen for its activity, and enhances PGC-1α K224 monomethylation. This modification decreases PGC-1α's activity required for NRF1- and NRF2-dependent transcriptional regulation of TFAM, TFB1M, and TFB2M, resulting in reduced mitochondrial biogenesis. Expression of PGC-1α K224R mutant significantly increases mitochondrial biogenesis, reactive oxygen species (ROS) production, and tumor cell apoptosis under hypoxia and inhibits brain tumor growth in mice. This study revealed that PGC-1α monomethylation, which is dependent on oxygen availability-regulated KDM3A, plays a critical role in the regulation of mitochondrial biogenesis.
Asunto(s)
Neoplasias Encefálicas/enzimología , Histona Demetilasas con Dominio de Jumonji/metabolismo , Mitocondrias/enzimología , Biogénesis de Organelos , Oxígeno/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Apoptosis , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Metilación , Ratones Endogámicos BALB C , Ratones Desnudos , Mitocondrias/patología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Carga Tumoral , Hipoxia Tumoral , Microambiente TumoralRESUMEN
Programmed death ligand 1 (PD-L1, also called B7-H1) is an immune checkpoint protein that inhibits immune function through its binding of the programmed cell death protein 1 (PD-1) receptor. Clinically approved antibodies block extracellular PD-1 and PD-L1 binding, yet the role of intracellular PD-L1 in cancer remains poorly understood. Here, we discovered that intracellular PD-L1 acts as an RNA binding protein that regulates the mRNA stability of NBS1, BRCA1, and other DNA damage-related genes. Through competition with the RNA exosome, intracellular PD-L1 protects targeted RNAs from degradation, thereby increasing cellular resistance to DNA damage. RNA immunoprecipitation and RNA-seq experiments demonstrated that PD-L1 regulates RNA stability genome-wide. Furthermore, we developed a PD-L1 antibody, H1A, which abrogates the interaction of PD-L1 with CMTM6, thereby promoting PD-L1 degradation. Intracellular PD-L1 may be a potential therapeutic target to enhance the efficacy of radiotherapy and chemotherapy in cancer through the inhibition of DNA damage response and repair.
Asunto(s)
Antígeno B7-H1/genética , Reparación del ADN , ADN de Neoplasias/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Regulación Neoplásica de la Expresión Génica , Receptor de Muerte Celular Programada 1/genética , Animales , Antineoplásicos/farmacología , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Cisplatino/farmacología , Daño del ADN , ADN de Neoplasias/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Rayos gamma/uso terapéutico , Células HCT116 , Células HeLa , Humanos , Proteínas con Dominio MARVEL , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Proteínas de la Mielina , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Proteolisis/efectos de los fármacos , Proteolisis/efectos de la radiación , Estabilidad del ARN/efectos de los fármacos , Estabilidad del ARN/efectos de la radiación , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
The dorsoventral gradient of BMP signaling plays an essential role in embryonic patterning. Zinc Finger SWIM-Type Containing 4 (zswim4) is expressed in the Spemann-Mangold organizer at the onset of Xenopus gastrulation and is then enriched in the developing neuroectoderm at the mid-gastrula stages. Knockdown or knockout of zswim4 causes ventralization. Overexpression of zswim4 decreases, whereas knockdown of zswim4 increases the expression levels of ventrolateral mesoderm marker genes. Mechanistically, ZSWIM4 attenuates the BMP signal by reducing the protein stability of SMAD1 in the nucleus. Stable isotope labeling by amino acids in cell culture (SILAC) identifies Elongin B (ELOB) and Elongin C (ELOC) as the interaction partners of ZSWIM4. Accordingly, ZSWIM4 forms a complex with the Cul2-RING ubiquitin ligase and ELOB and ELOC, promoting the ubiquitination and degradation of SMAD1 in the nucleus. Our study identifies a novel mechanism that restricts BMP signaling in the nucleus.
Asunto(s)
Proteínas Morfogenéticas Óseas , Proteínas Portadoras , Animales , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Organizadores Embrionarios/metabolismo , Xenopus laevis/metabolismo , Tipificación del Cuerpo/fisiología , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Regulación del Desarrollo de la Expresión GénicaRESUMEN
Owing to its high thermal and electrical conductivities, its ductility and its overall non-toxicity1-3, copper is widely used in daily applications and in industry, particularly in anti-oxidation technologies. However, many widespread anti-oxidation techniques, such as alloying and electroplating1,2, often degrade some physical properties (for example, thermal and electrical conductivities and colour) and introduce harmful elements such as chromium and nickel. Although efforts have been made to develop surface passivation technologies using organic molecules, inorganic materials or carbon-based materials as oxidation inhibitors4-12, their large-scale application has had limited success. We have previously reported the solvothermal synthesis of highly air-stable copper nanosheets using formate as a reducing agent13. Here we report that a solvothermal treatment of copper in the presence of sodium formate leads to crystallographic reconstruction of the copper surface and formation of an ultrathin surface coordination layer. We reveal that the surface modification does not affect the electrical or thermal conductivities of the bulk copper, but introduces high oxidation resistance in air, salt spray and alkaline conditions. We also develop a rapid room-temperature electrochemical synthesis protocol, with the resulting materials demonstrating similarly strong passivation performance. We further improve the oxidation resistance of the copper surfaces by introducing alkanethiol ligands to coordinate with steps or defect sites that are not protected by the passivation layer. We demonstrate that the mild treatment conditions make this technology applicable to the preparation of air-stable copper materials in different forms, including foils, nanowires, nanoparticles and bulk pastes. We expect that the technology developed in this work will help to expand the industrial applications of copper.
RESUMEN
The pace of the endogenous circadian clock is important for organisms to maintain homeostasis. CHRONO has been shown to be a core component of the mammalian clock and has recently been implicated to function in several important physiological aspects. To function properly, CHRONO needs to enter the nucleus to repress transcription. We have previously shown that the N-terminus of CHRONO is required for its nuclear entry. However, how CHRONO enters the nucleus and regulates the circadian clock remains unknown. Here, we report that a novel non-classical nuclear localization signal (NLS) in the N-terminus of CHRONO is responsible for its nuclear entry. Multiple nuclear transporters are identified that facilitate the nuclear import of CHRONO. We show that the Arg63 is the critical amino acid of the NLS. Using prime editing technology, we precisely edit the Arg63 to Ala at the genomic loci and demonstrate that this mutation prolongs the circadian period, which is similar to knockdown of CHRONO. By using the CHRONO knockout and R63A mutant cells, we also investigated the changes in the cytoplasmic/nuclear distribution of BMAL1. We show that BMAL1 localizes more in the cytoplasm in the deficiency of CHRONO nuclear entry. These results provide a model for CHRONO nuclear entry using a network of importins involved in the regulation of the circadian period.
RESUMEN
Enhanced DNA repair is an important mechanism of inherent and acquired resistance to DNA targeted therapies, including poly ADP ribose polymerase (PARP) inhibition. Spleen associated tyrosine kinase (Syk) is a non-receptor tyrosine kinase acknowledged for its regulatory roles in immune cell function, cell adhesion, and vascular development. This study presents evidence indicating that Syk expression in high-grade serous ovarian cancer and triple-negative breast cancers promotes DNA double-strand break resection, homologous recombination (HR), and subsequent therapeutic resistance. Our investigations reveal that Syk is activated by ATM following DNA damage and is recruited to DNA double-strand breaks by NBS1. Once localized to the break site, Syk phosphorylates CtIP, a pivotal mediator of resection and HR, at Thr-847 to promote repair activity, particularly in Syk-expressing cancer cells. Inhibition of Syk or its genetic deletion impedes CtIP Thr-847 phosphorylation and overcomes the resistant phenotype. Collectively, our findings suggest a model wherein Syk fosters therapeutic resistance by promoting DNA resection and HR through a hitherto uncharacterized ATM-Syk-CtIP pathway. Moreover, Syk emerges as a promising tumor-specific target to sensitize Syk-expressing tumors to PARP inhibitors, radiation and other DNA-targeted therapies.
Asunto(s)
Roturas del ADN de Doble Cadena , Resistencia a Antineoplásicos , Recombinación Homóloga , Quinasa Syk , Quinasa Syk/metabolismo , Quinasa Syk/genética , Quinasa Syk/antagonistas & inhibidores , Humanos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Femenino , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Fosforilación , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Reparación del ADN/efectos de los fármacos , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Animales , Línea Celular Tumoral , Daño del ADN/efectos de los fármacosRESUMEN
Acute lymphoblastic leukemia (ALL) is a heterogeneous clonal disease originated from B- or T-cell lymphoid precursor cells. ALL is often refractory or relapses after treatment. Novel treatments are anxiously needed in order to achieve a better response and prolonged overall survival in ALL patients. In the present study, we aimed at examining the anti-tumor effect of niclosamide on ALL. We investigated the effects of niclosamide on the proliferation and apoptosis in vitro, the growth of ALL cells in xenografted NCG mice. The results showed that niclosamide treatment potently inhibited the growth of ALL cells and induced apoptosis via elevating the levels of reactive oxygen species (ROS) and activating TP53. These findings suggest that niclosamide may be a promisingly potential agent for ALL therapy.
RESUMEN
BACKGROUND: Transcription factors (TFs) of plant-specific SHORT INTERNODES (SHI) family play a significant role in regulating development and metabolism in plants. In Artemisia annua, various TFs from different families have been discovered to regulate the accumulation of artemisinin. However, specific members of the SHI family in A. annua (AaSHIs) have not been identified to regulate the biosynthesis of artemisinin. RESULTS: We found five AaSHI genes (AaSHI1 to AaSHI5) in the A. annua genome. The expression levels of AaSHI1, AaSHI2, AaSHI3 and AaSHI4 genes were higher in trichomes and young leaves, also induced by light and decreased when the plants were subjected to dark treatment. The expression pattern of these four AaSHI genes was consistent with the expression pattern of four structural genes of artemisinin biosynthesis and their specific regulatory factors. Dual-luciferase reporter assays, yeast one-hybrid assays, and transient transformation in A. annua provided the evidence that AaSHI1 could directly bind to the promoters of structural genes AaADS and AaCYP71AV1, and positively regulate their expressions. This study has presented candidate genes, with AaSHI1 in particular, that can be considered for the metabolic engineering of artemisinin biosynthesis in A. annua. CONCLUSIONS: Overall, a genome-wide analysis of the AaSHI TF family of A. annua was conducted. Five AaSHIs were identified in A. annua genome. Among the identified AaSHIs, AaSHI1 was found to be localized to the nucleus and activate the expression of structural genes of artemisinin biosynthesis including AaADS and AaCYP71AV1. These results indicated that AaSHI1 had positive roles in modulating artemisinin biosynthesis, providing candidate genes for obtaining high-quality new A. annua germplasms.
Asunto(s)
Artemisia annua , Artemisininas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Factores de Transcripción , Artemisia annua/genética , Artemisia annua/metabolismo , Artemisininas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , FilogeniaRESUMEN
The circadian clock controls the expression of a large proportion of protein-coding genes in mammals and can modulate a wide range of physiological processes. Recent studies have demonstrated that disruption or dysregulation of the circadian clock is involved in the development and progression of several diseases, including cancer. The cell cycle is considered to be the fundamental process related to cancer. Accumulating evidence suggests that the circadian clock can control the expression of a large number of genes related to the cell cycle. This article reviews the mechanism of cell cycle-related genes whose chromatin regulatory elements are rhythmically occupied by core circadian clock transcription factors, while their RNAs are rhythmically expressed. This article further reviews the identified oscillatory cell cycle-related genes in higher organisms such as baboons and humans. The potential functions of these identified genes in regulating cell cycle progression are also discussed. Understanding how the molecular clock controls the expression of cell cycle genes will be beneficial for combating and treating cancer.
Asunto(s)
Relojes Circadianos , Neoplasias , Animales , Humanos , Ritmo Circadiano/genética , Ciclo Celular/genética , Relojes Circadianos/genética , División Celular , Neoplasias/genética , MamíferosRESUMEN
Lupus nephritis (LN) is one of the most severe manifestations of systemic lupus erythematosus (SLE), but its mechanism of onset remains unclear. Since impaired mitophagy has been implicated in multiple organs in SLE, we hypothesized that mitophagy dysfunction is critical in the development of LN and that pharmacologically targeting mitophagy would ameliorate this disease. Therefore, lupus-prone MRL/MpJ-Faslpr (MRL/lpr) and NZBWF1/J mice were treated with a novel mitophagy inducer, UMI-77, during their onset of LN. This treatment effectively mitigated kidney inflammation and damage as assessed by histology and flow cytometry. Furthermore, dendritic cell (DC)-T-cell coculture assay indicated that UMI-77 treatment attenuated DC function that would drive T-cell proliferation but did not directly influence the potent T-cell proliferation in lupus mice. UMI-77 also restored mitochondrial function and attenuated proinflammatory phenotypes in lupus DCs. Adoptive transfer of DCs from MRL/lpr mice augmented serum anti-dsDNA IgG, urine protein and T-cell infiltration of the kidney in MRL/MpJ mice, which could be prevented by either treating lupus donors in vivo or lupus DCs directly with UMI-77. UMI-77 also restored mitochondrial function in myeloid cells from patients with LN in vitro as evidenced by increased ATP levels. Thus, enhancing mitophagy in SLE restrains autoimmunity and limits kidney inflammation for LN development. Hence, our findings suggest targeting mitophagy as a tangible pathway to treat LN.
Asunto(s)
Lupus Eritematoso Sistémico , Nefritis Lúpica , Sulfonamidas , Tioglicolatos , Humanos , Ratones , Animales , Nefritis Lúpica/patología , Autoantígenos , Mitofagia , Ratones Endogámicos MRL lpr , Riñón/patología , Células Mieloides , Inflamación/patologíaRESUMEN
INTRODUCTION: Homologous recombination deficiency (HRD) testing is used to determine the appropriateness of poly ADP-ribose polymerase inhibitors for patients with epithelial ovarian cancer and no germline/somatic BRCA1/2 alterations. Myriad MyChoice CDx reports a genomic instability score (GIS) to quantify the level of HRD, with a positive score defined as ≥42. The authors sought to define factors associated with obtaining an inconclusive HRD test result. METHODS: GIS was retrieved for patients at their institution with epithelial ovarian cancer without germline/somatic BRCA1/2 deleterious alterations who underwent HRD testing from April 2020-August 2023. Clinical data were abstracted from the medical record. RESULTS: Of 477 HRD test results identified, 57 (12%) were inconclusive. High-grade serous ovarian cancers had higher GIS than other histologic types (median 29 vs. 21, p < .001). Most HRD cases were of high-grade serous histology; no cases with clear cell or endometrioid histology were HRD-positive. On univariate analysis, interval versus primary cytoreductive surgery, other specimen sources versus surgical specimens, and chemotherapy exposure were risk factors for inconclusive HRD testing. On multivariable analysis, chemotherapy exposure, and tissue source were associated with an inconclusive test result, with surgical specimens more likely to yield a conclusive result than other sources (biopsy, cytology, other). Age, stage, self-reported race, and histology were not associated with an inconclusive result. CONCLUSIONS: Surgical tissue was more likely to yield a conclusive HRD test result versus other sources of epithelial ovarian cancer tissue acquisition. When feasible, laparoscopic biopsy before initiation of neoadjuvant chemotherapy may increase the likelihood of obtaining interpretable HRD test results.
RESUMEN
BACKGROUND: Racial disparities in outcomes exist in endometrial cancer (EC). The contribution of ancestry-based variations in germline pathogenic variants (gPVs) is unknown. METHODS: Germline assessment of ≥76 cancer predisposition genes was performed in patients with EC undergoing tumor-normal Memorial Sloan Kettering Cancer Center Integrated Mutation Profiling of Actionable Cancer Targets sequencing from January 1, 2015 through June 30, 2021. Self-reported race/ethnicity and Ashkenazi Jewish ancestry data classified patients into groups. Genetic ancestry was inferred from Memorial Sloan Kettering Cancer Center Integrated Mutation Profiling of Actionable Cancer Targets. Rates of gPV and genetic counseling were compared by ancestry. RESULTS: Among 1625 patients with EC, 216 (13%) had gPVs; 15 had >1 gPV. Rates of gPV varied by self-reported ancestry (Ashkenazi Jewish, 40/202 [20%]; Asian, 15/124 [12%]; Black/African American (AA), 12/171 [7.0%]; Hispanic, 15/124 [12%]; non-Hispanic (NH) White, 129/927 [14%]; missing, 5/77 [6.5%]; p = .009], with similar findings by genetic ancestry (p < .001). We observed a lower likelihood of gPVs in patients of Black/AA (odds ratio [OR], 0.44; 95% CI, 0.22-0.81) and African (AFR) ancestry (OR, 0.42; 95% CI, 0.18-0.85) and a higher likelihood in patients of Ashkenazi Jewish genetic ancestry (OR, 1.62; 95% CI; 1.11-2.34) compared with patients of non-Hispanic White/European ancestry, even after adjustment for age and molecular subtype. Somatic landscape influenced gPVs with lower rates of microsatellite instability-high tumors in patients of Black/AA and AFR ancestry. Among those with newly identified gPVs (n = 114), 102 (89%) were seen for genetic counseling, with lowest rates among Black/AA (75%) and AFR patients (67%). CONCLUSIONS: In those with EC, gPV and genetic counseling varied by ancestry, with lowest rates among Black/AA and AFR patients, potentially contributing to disparities in outcomes given implications for treatment and cancer prevention. PLAIN LANGUAGE SUMMARY: Black women with endometrial cancer do worse than White women, and there are many reasons for this disparity. Certain genetic changes from birth (mutations) can increase the risk of cancer, and it is unknown if rates of these changes are different between different ancestry groups. Genetic mutations in 1625 diverse women with endometrial cancer were studied and the lowest rates of mutations and genetic counseling were found in Black and African ancestry women. This could affect their treatment options as well as their families and may make disparities worse.
Asunto(s)
Neoplasias Endometriales , Etnicidad , Grupos Raciales , Femenino , Humanos , Neoplasias Endometriales/genética , Células GerminativasRESUMEN
Concentration heterogeneity of diffusible reactants is a prevalent phenomenon in biochemical processes, requiring the generation of concentration gradients for the relevant experiments. In this study, we present a high-density pyramid array microfluidic network for the effective and precise generation of multiple concentration gradients. The complex gradient distribution in the 2D array can be adaptively adjusted by modulating the reactant velocities and concentrations at the inlets. In addition, the unique design of each reaction chamber and mixing block in the array ensures uniform concentrations within each chamber during dynamic changes, enabling large-scale reactions with low reactant volumes. Through detailed numerical simulation of mass transport within the complex microchannel networks, the proposed method allows researchers to determine the desired number of reaction chambers within a given concentration range based on experimental requirements and to quickly obtain the operating conditions with the help of machine learning-based prediction. The effectiveness in generating a multiple concentration gradient environment was further demonstrated by concentration-dependent calcium carbonate crystallization experiments. This device provides a highly efficient mixing and adaptable concentration platform that is well suited for high-throughput and multiplexed reactions.
RESUMEN
Major histocompatibility complex (MHC) could serve as a potential biomarker for tumor immunotherapy, however, it is not yet known whether MHC could distinguish potential beneficiaries. Single-cell RNA sequencing datasets derived from patients with immunotherapy were collected to elucidate the association between MHC and immunotherapy response. A novel MHCsig was developed and validated using large-scale pan-cancer data, including The Cancer Genome Atlas and immunotherapy cohorts. The therapeutic value of MHCsig was further explored using 17 CRISPR/Cas9 datasets. MHC-related genes were associated with drug resistance and MHCsig was significantly and positively associated with immunotherapy response and total mutational burden. Remarkably, MHCsig significantly enriched 6% top-ranked genes, which were potential therapeutic targets. Moreover, we generated Hub-MHCsig, which was associated with survival and disease-special survival of pan-cancer, especially low-grade glioma. This result was also confirmed in cell lines and in our own clinical cohort. Later low-grade glioma-related Hub-MHCsig was established and the regulatory network was constructed. We provided conclusive clinical evidence regarding the association between MHCsig and immunotherapy response. We developed MHCsig, which could effectively predict the benefits of immunotherapy for multiple tumors. Further exploration of MHCsig revealed some potential therapeutic targets and regulatory networks.