RESUMEN
Plasma membranes of animal cells are enriched for cholesterol. Cholesterol-dependent cytolysins (CDCs) are pore-forming toxins secreted by bacteria that target membrane cholesterol for their effector function. Phagocytes are essential for clearance of CDC-producing bacteria; however, the mechanisms by which these cells evade the deleterious effects of CDCs are largely unknown. Here, we report that interferon (IFN) signals convey resistance to CDC-induced pores on macrophages and neutrophils. We traced IFN-mediated resistance to CDCs to the rapid modulation of a specific pool of cholesterol in the plasma membrane of macrophages without changes to total cholesterol levels. Resistance to CDC-induced pore formation requires the production of the oxysterol 25-hydroxycholesterol (25HC), inhibition of cholesterol synthesis and redistribution of cholesterol to an esterified cholesterol pool. Accordingly, blocking the ability of IFN to reprogram cholesterol metabolism abrogates cellular protection and renders mice more susceptible to CDC-induced tissue damage. These studies illuminate targeted regulation of membrane cholesterol content as a host defense strategy.
Asunto(s)
Infecciones Bacterianas/inmunología , Toxinas Bacterianas/inmunología , Hidroxicolesteroles/metabolismo , Interferones/aislamiento & purificación , Fagocitos/inmunología , Estreptolisinas/inmunología , Animales , Bacterias/inmunología , Bacterias/metabolismo , Proteínas Bacterianas/administración & dosificación , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular/inmunología , Células Cultivadas , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades/inmunología , Femenino , Interacciones Microbiota-Huesped/inmunología , Humanos , Microscopía Intravital , Masculino , Ratones , Ratones Transgénicos , Fagocitos/citología , Fagocitos/metabolismo , Cultivo Primario de Células , Esteroide Hidroxilasas/genética , Esteroide Hidroxilasas/metabolismo , Estreptolisinas/administración & dosificación , Estreptolisinas/metabolismoRESUMEN
Cellular lipid requirements are achieved through a combination of biosynthesis and import programs. Using isotope tracer analysis, we show that type I interferon (IFN) signaling shifts the balance of these programs by decreasing synthesis and increasing import of cholesterol and long chain fatty acids. Genetically enforcing this metabolic shift in macrophages is sufficient to render mice resistant to viral challenge, demonstrating the importance of reprogramming the balance of these two metabolic pathways in vivo. Unexpectedly, mechanistic studies reveal that limiting flux through the cholesterol biosynthetic pathway spontaneously engages a type I IFN response in a STING-dependent manner. The upregulation of type I IFNs was traced to a decrease in the pool size of synthesized cholesterol and could be inhibited by replenishing cells with free cholesterol. Taken together, these studies delineate a metabolic-inflammatory circuit that links perturbations in cholesterol biosynthesis with activation of innate immunity.
Asunto(s)
Colesterol/metabolismo , Inmunidad Innata , Interferón gamma/metabolismo , Transducción de Señal , Animales , Línea Celular Tumoral , Humanos , Interferon beta-1b , Proteínas de la Membrana/metabolismo , Ácido Mevalónico/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismoRESUMEN
Interleukin-10 (IL-10) is a key anti-inflammatory cytokine that can limit immune cell activation and cytokine production in innate immune cell types1. Loss of IL-10 signalling results in life-threatening inflammatory bowel disease in humans and mice-however, the exact mechanism by which IL-10 signalling subdues inflammation remains unclear2-5. Here we find that increased saturated very long chain (VLC) ceramides are critical for the heightened inflammatory gene expression that is a hallmark of IL-10 deficiency. Accordingly, genetic deletion of ceramide synthase 2 (encoded by Cers2), the enzyme responsible for VLC ceramide production, limited the exacerbated inflammatory gene expression programme associated with IL-10 deficiency both in vitro and in vivo. The accumulation of saturated VLC ceramides was regulated by a decrease in metabolic flux through the de novo mono-unsaturated fatty acid synthesis pathway. Restoring mono-unsaturated fatty acid availability to cells deficient in IL-10 signalling limited saturated VLC ceramide production and the associated inflammation. Mechanistically, we find that persistent inflammation mediated by VLC ceramides is largely dependent on sustained activity of REL, an immuno-modulatory transcription factor. Together, these data indicate that an IL-10-driven fatty acid desaturation programme rewires VLC ceramide accumulation and aberrant activation of REL. These studies support the idea that fatty acid homeostasis in innate immune cells serves as a key regulatory node to control pathologic inflammation and suggests that 'metabolic correction' of VLC homeostasis could be an important strategy to normalize dysregulated inflammation caused by the absence of IL-10.
Asunto(s)
Inflamación , Interleucina-10 , Esfingolípidos , Animales , Humanos , Ratones , Ceramidas/química , Ceramidas/metabolismo , Ácidos Grasos Insaturados/biosíntesis , Ácidos Grasos Insaturados/metabolismo , Homeostasis , Inmunidad Innata , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Interleucina-10/deficiencia , Interleucina-10/genética , Interleucina-10/metabolismo , Proteínas Proto-Oncogénicas c-rel , Esfingolípidos/metabolismoRESUMEN
The ability of superhydrophobic surfaces to stay dry, self-clean and avoid biofouling is attractive for applications in biotechnology, medicine and heat transfer1-10. Water droplets that contact these surfaces must have large apparent contact angles (greater than 150 degrees) and small roll-off angles (less than 10 degrees). This can be realized for surfaces that have low-surface-energy chemistry and micro- or nanoscale surface roughness, minimizing contact between the liquid and the solid surface11-17. However, rough surfaces-for which only a small fraction of the overall area is in contact with the liquid-experience high local pressures under mechanical load, making them fragile and highly susceptible to abrasion18. Additionally, abrasion exposes underlying materials and may change the local nature of the surface from hydrophobic to hydrophilic19, resulting in the pinning of water droplets to the surface. It has therefore been assumed that mechanical robustness and water repellency are mutually exclusive surface properties. Here we show that robust superhydrophobicity can be realized by structuring surfaces at two different length scales, with a nanostructure design to provide water repellency and a microstructure design to provide durability. The microstructure is an interconnected surface frame containing 'pockets' that house highly water-repellent and mechanically fragile nanostructures. This surface frame acts as 'armour', preventing the removal of the nanostructures by abradants that are larger than the frame size. We apply this strategy to various substrates-including silicon, ceramic, metal and transparent glass-and show that the water repellency of the resulting superhydrophobic surfaces is preserved even after abrasion by sandpaper and by a sharp steel blade. We suggest that this transparent, mechanically robust, self-cleaning glass could help to negate the dust-contamination issue that leads to a loss of efficiency in solar cells. Our design strategy could also guide the development of other materials that need to retain effective self-cleaning, anti-fouling or heat-transfer abilities in harsh operating environments.
Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Propiedades de Superficie , Incrustaciones Biológicas/prevención & control , Agua/químicaRESUMEN
Wound healing through reepithelialization of gaps is of profound importance to the medical community. One critical mechanism identified by researchers for closing non-cell-adhesive gaps is the accumulation of actin cables around concave edges and the resulting purse-string constriction. However, the studies to date have not separated the gap-edge curvature effect from the gap size effect. Here, we fabricate micropatterned hydrogel substrates with long, straight, and wavy non-cell-adhesive stripes of different gap widths to investigate the stripe edge curvature and stripe width effects on the reepithelialization of Madin-Darby canine kidney (MDCK) cells. Our results show that MDCK cell reepithelization is closely regulated by the gap geometry and may occur through different pathways. In addition to purse-string contraction, we identify gap bridging either via cell protrusion or by lamellipodium extension as critical cellular and molecular mechanisms for wavy gap closure. Cell migration in the direction perpendicular to wound front, sufficiently small gap size to allow bridging, and sufficiently high negative curvature at cell bridges for actin cable constriction are necessary/sufficient conditions for gap closure. Our experiments demonstrate that straight stripes rarely induce cell migration perpendicular to wound front, but wavy stripes do; cell protrusion and lamellipodia extension can help establish bridges over gaps of about five times the cell size, but not significantly beyond. Such discoveries deepen our understanding of mechanobiology of cell responses to curvature and help guide development of biophysical strategies for tissue repair, plastic surgery, and better wound management.
Asunto(s)
Actinas , Cicatrización de Heridas , Animales , Perros , Actinas/fisiología , Células de Riñón Canino Madin Darby , Movimiento Celular/fisiología , Cicatrización de Heridas/fisiologíaRESUMEN
Regulating the motion of nanoscale objects on a solid surface is vital for a broad range of technologies such as nanotechnology, biotechnology, and mechanotechnology. In spite of impressive advances achieved in the field, there is still a lack of a robust mechanism which can operate under a wide range of situations and in a controllable manner. Here, we report a mechanism capable of controllably driving directed motion of any nanoobjects (e.g., nanoparticles, biomolecules, etc.) in both solid and liquid forms. We show via molecular dynamics simulations that a nanoobject would move preferentially away from the fluctuating region of an underlying substrate, a phenomenon termed fluctuotaxis-for which the driving force originates from the difference in atomic fluctuations of the substrate behind and ahead of the object. In particular, we find that the driving force can depend quadratically on both the amplitude and frequency of the substrate and can thus be tuned flexibly. The proposed driving mechanism provides a robust and controllable way for nanoscale mass delivery and has potential in various applications including nanomotors, molecular machines, etc.
RESUMEN
Intercalation-type layered oxides have been widely explored as cathode materials for aqueous zinc-ion batteries (ZIBs). Although high-rate capability has been achieved based on the pillar effect of various intercalants for widening interlayer space, an in-depth understanding of atomic orbital variations induced by intercalants is still unknown. Herein, we design an NH4+-intercalated vanadium oxide (NH4+-V2O5) for high-rate ZIBs, together with deeply investigating the role of the intercalant in terms of atomic orbital. Besides extended layer spacing, our X-ray spectroscopies reveal that the insertion of NH4+ could promote electron transition to 3dxy state of V t2g orbital in V2O5, which significantly accelerates the electron transfer and Zn-ion migration, further verified by DFT calculations. As results, the NH4+-V2O5 electrode delivers a high capacity of 430.0 mA h g-1 at 0.1 A g-1, especially excellent rate capability (101.0 mA h g-1 at 200 C), enabling fast charging within 18 s. Moreover, the reversible V t2g orbital and lattice space variation during cycling are found via ex-situ soft X-ray absorption spectrum and in-situ synchrotron radiation X-ray diffraction, respectively. This work provides an insight at orbital level in advanced cathode materials.
RESUMEN
Academic achievement is partly heritable and highly polygenic. However, genetic effects on academic achievement are not independent of environmental processes. We investigated whether aspects of the family environment mediated genetic effects on academic achievement across development. Our sample included 5151 children who participated in the Twins Early Development Study, as well as their parents and teachers. Data on academic achievement and family environments (parenting, home environments, and geocoded indices of neighbourhood characteristics) were available at ages 7, 9, 12 and 16. We computed educational attainment polygenic scores (PGS) and further separated genetic effects into cognitive and noncognitive PGS. Three core findings emerged. First, aspects of the family environment, but not the wider neighbourhood context, consistently mediated the PGS effects on achievement across development-accounting for up to 34.3% of the total effect. Family characteristics mattered beyond socio-economic status. Second, family environments were more robustly linked to noncognitive PGS effects on academic achievement than cognitive PGS effects. Third, when we investigated whether environmental mediation effects could also be observed when considering differences between siblings, adjusting for family fixed effects, we found that environmental mediation was nearly exclusively observed between families. This is consistent with the proposition that family environmental contexts contribute to academic development via passive gene-environment correlation processes or genetic nurture. Our results show how parents tend to shape environments that foster their children's academic development partly based on their own genetic disposition, particularly towards noncognitive skills, rather than responding to each child's genetic disposition.
RESUMEN
Anticancer nanomedicines have been proven effective in mitigating the side effects of chemotherapeutic drugs. However, challenges remain in augmenting their therapeutic efficacy. Nanomedicines responsive to the pathological abnormalities in the tumor microenvironment (TME) are expected to overcome the biological limitations of conventional nanomedicines, enhance the therapeutic efficacies, and further reduce the side effects. This Review aims to quantitate the various pathological abnormalities in the TME, which may serve as unique endogenous stimuli for the design of stimuli-responsive nanomedicines, and to provide a broad and objective perspective on the current understanding of stimuli-responsive nanomedicines for cancer treatment. We dissect the typical transport process and barriers of cancer drug delivery, highlight the key design principles of stimuli-responsive nanomedicines designed to tackle the series of barriers in the typical drug delivery process, and discuss the "all-into-one" and "one-for-all" strategies for integrating the needed properties for nanomedicines. Ultimately, we provide insight into the challenges and future perspectives toward the clinical translation of stimuli-responsive nanomedicines.
Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Nanomedicina , Neoplasias/terapia , Sistemas de Liberación de Medicamentos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Preparaciones Farmacéuticas , Microambiente TumoralRESUMEN
Microglia are a specialized population of innate immune cells located in the central nervous system. In response to physiological and pathological changes in their microenvironment, microglia can polarize into pro-inflammatory or anti-inflammatory phenotypes. A dysregulation in the pro-/anti-inflammatory balance is associated with many pathophysiological changes in the brain and nervous system. Therefore, the balance between microglia pro-/anti-inflammatory polarization can be a potential biomarker for the various brain pathologies. A non-invasive method of detecting microglia polarization in patients would have promising clinical applications. Here, we perform proteomic analysis of small extracellular vesicles (sEVs) derived from microglia cells to identify sEVs biomarkers indicative of pro-inflammatory and anti-inflammatory phenotypic changes. sEVs were isolated from microglia cell lines under different inflammatory conditions and analyzed by proteomics by liquid chromatography with mass spectrometry. Our findings provide the potential roles of sEVs that could be related to the pathogenesis of various brain diseases.
Asunto(s)
Vesículas Extracelulares , Microglía , Proteómica , Microglía/metabolismo , Humanos , Vesículas Extracelulares/metabolismo , Proteómica/métodos , Línea Celular , Proteoma/análisis , Proteoma/metabolismo , Biomarcadores/metabolismo , Biomarcadores/análisis , Inflamación/metabolismoRESUMEN
As one of the potential catalysts, disordered solid solution alloys can offer a wealth of catalytic sites. However, accurately evaluating their activity localization structure and overall activity from each individual site remains a formidable challenge. Herein, an approach based on density functional theory and machine learning was used to obtain a large number of sites of the Pt-Ru alloy as the model multisite catalyst for the hydrogen evolution reaction. Subsequently, a series of statistical approaches were employed to unveil the relationship between the geometric structure and overall activity. Based on the radial frequency distribution of metal elements and the distribution of ΔGH, we have identified the surface and subsurface sites occupied by Pt and Ru, respectively, as the most active sites. Particularly, the concept of equivalent site ratio predicts that the overall activity is highest when the Ru content is 20-30%. Furthermore, a series of Pt-Ru alloys were synthesized to validate the proposed theory. This provides crucial insights into understanding the origin of catalytic activity in alloys and thus will better guide the rational development of targeted multisite catalysts.
RESUMEN
Ni-based electrocatalysts have been predicted as highly potential candidates for hydrogen evolution reaction (HER); however, their applicability is hindered by an unfavorable d-band energy level (Ed). Moreover, precise d-band structural engineering of Ni-based materials is deterred by appropriative synthesis methods and experimental characterization. Herein, we meticulously synthesize a special single-iodine-atom structure (I-Ni@C) and characterize the Ed manipulation via resonant inelastic X-ray scattering (RIXS) spectroscopy to fill this gap. The complex catalytic mechanism has been elucidated via synchrotron radiation-based multitechniques (SRMS) including X-ray absorption fine structure (XAFS), in situ synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectroscopy, and near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS). In particular, RIXS is innovatively applied to reveal the precise regulation of Ni Ed of I-Ni@C. Consequently, the role of such single-iodine-atom strategy is confirmed to not only facilitate the moderate Ed of the Ni site for balancing the adsorption/desorption capacities of key intermediates but also act as a bridge to enhance the electronic interaction between Ni and the carbon shell for forming a localized polarized electric field conducive to H2O dissociation. As a result, I-Ni@C exhibits an enhanced alkaline hydrogen evolution performance with an overpotential of 78 mV at 10 mA/cm2 and superior stability, surpassing the majority of the reported Ni-based catalysts. Overall, this study has managed to successfully tailor the d-band center of materials from the SRMS perspective, which has crucial implications for nanotechnology, chemistry, catalysis, and other fields.
RESUMEN
BACKGROUND: In 2022, our team launched the pioneering national proficiency testing (PT) scheme for the pathological diagnosis of breast cancer, rapidly establishing its credibility throughout China. Aiming to continuously monitor and improve the proficiency of Chinese pathologists in breast pathology, the second round of the PT scheme was initiated in 2023, which will expand the number of participating institutions, and will conduct a nationwide investigation into the interpretation of HER2 0, 1+, and 2+/FISH- categories in China. METHODS: The methodology employed in the current round of PT scheme closely mirrors that of the preceding cycle in 2022, which is designed and implemented according to the "Conformity assessment-General requirements for proficiency testing"(GB/T27043-2012/ISO/IEC 17043:2010). More importantly, we utilized a statistics-based method to generate assigned values to enhance their robustness and credibility. RESULTS: The final PT results, published on the website of the National Quality Control Center for Cancer ( http://117.133.40.88:3927 ), showed that all participants passed the testing. However, a few institutions demonstrated systemic biases in scoring HER2 0, 1+, and 2+/FISH- with accuracy levels below 59%, considered unsatisfactory. Especially, the concordance rate for HER2 0 cases was only 78.1%, indicating challenges in distinguishing HER2 0 from low HER2 expression. Meanwhile, areas for histologic type and grade interpretation improvement were also noted. CONCLUSIONS: Our PT scheme demonstrated high proficiency in diagnosing breast cancer in China. But it also identified systemic biases in scoring HER2 0, 1+, and 2+/FISH- at some institutions. More importantly, our study highlighted challenges in the evaluation at the extreme lower end of the HER2 staining spectrum, a crucial area for further research. Meanwhile, it also revealed the need for improvements in interpreting histologic types and grades. These findings strengthened the importance of robust quality assurance mechanisms, like the nationwide PT scheme conducted in this study, to maintain high diagnostic standards and identify areas requiring further training and enhancement.
Asunto(s)
Neoplasias de la Mama , Ensayos de Aptitud de Laboratorios , Receptor ErbB-2 , Humanos , Femenino , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Receptor ErbB-2/metabolismo , China , Hibridación Fluorescente in Situ/normas , Biomarcadores de Tumor , PatólogosRESUMEN
Profiting from the unique atomic laminated structure, metallic conductivity, and superior mechanical properties, transition metal carbides and nitrides named MAX phases have shown great potential as anodes in lithium-ion batteries. However, the complexity of MAX configurations poses a challenge. To accelerate such application, a minus integrated crystal orbital Hamilton populations descriptor is innovatively proposed to rapidly evaluate the lithium storage potential of various MAX, along with density functional theory computations. It confirms that surface A-element atoms bound to lithium ions have odds of escaping from MAX. Interestingly, the activated A-element atoms enhance the reversible uptake of lithium ions by MAX anodes through an efficient alloying reaction. As an experimental verification, the charge compensation and SnxLiy phase evolution of designed Zr2SnC MAX with optimized structure is visualized via in situ synchrotron radiation XRD and XAFS technique, which further clarifies the theoretically expected intercalation/alloying hybrid storage mechanism. Notably, Zr2SnC electrodes achieve remarkably 219.8% negative capacity attenuation over 3200 cycles at 1 A g-1. In principle, this work provides a reference for the design and development of advanced MAX electrodes, which is essential to explore diversified applications of the MAX family in specific energy fields.
RESUMEN
Parasitic side reactions and dendrites formation hinder the application of aqueous zinc ion batteries due to inferior cycling life and low reversibility. Against this background, N-methyl formamide (NMF), a multi-function electrolyte additive is applied to enhance the electrochemical performance. Studied via advanced synchrotron radiation spectroscopy and DFT calculations, the NMF additive simultaneously modifies the Zn2+ solvation structure and ensures uniform zinc deposition, thus suppressing both parasitic side reactions and dendrite formation. More importantly, an ultralong cycling life of 3115 h in the Zn||Zn symmetric cell at a current density of 0.5 mA cm-2 is achieved with the NMF additive. Practically, the Zn||PANI full cell utilizing NMF electrolyte shows better rate and cycling performance compared to the pristine ZnSO4 aqueous electrolyte. This work provides useful insights for the development of high-performance aqueous metal batteries.
RESUMEN
Triple-negative breast cancer (TNBC) is a malignant tumor with high degree of malignancy and lack of effective target treatment. The research aims to explore the role and mechanism of X collagen alpha-1 chain protein (COL10A1 gene) in TNBC. UALCAN and Kaplan-Meier were used to detect the expression of COL10A1 and its role in the prognosis of breast cancer patients. The cells with stably expressing high levels of COL10A1 were obtained by recombinant lentivirus infection. The expression of COL10A1 in cells was temporarily downregulated by siRNA interference fragments. Real-time quantitative polymerase chain reaction and western blot analysis were utilized to detect the changes of COL10A1 mRNA and protein expression. The biological functions of the cells were evaluated by colony formation, cell counting kit-8, cell invasion and wound healing experiments. In addition, the effect of COL10A1 on angiogenesis was investigated by tube formation assay. Xenograft tumor model was used to confirm the effect of COL10A1 on tumorigenicity in vivo and multiplex fluorescent immunohistochemistry to detect multiple proteins simultaneously. The possible molecular mechanism of the function of COL10A1 was speculated through the detection of proteins in functionally related pathways. COL10A1 is highly expressed and is significantly associated with worse overall survival (OS) and recurrence-free survival (RFS) in TNBC. Overexpression of COL10A1 increased the clone formation rate and cell migration capacity of TNBC cells. In the COL10A1 overexpression group, the clone formation rates of MD-MB-231 and BT-549 cells (21.5 ± 0.62, 27.83 ± 3.72)% were significantly higher than those in the control group(15.23 ± 2.79, 19.4 ± 1.47)%, and the relative migration ratio (47.40 ± 3.09, 41.26 ± 4.33)% were higher than those in the control group (34.48 ± 2.03, 21.80 ± 1.03)%. When the expression of COL10A1 was downregulated, the ability of clone formation and wound-healing migration capacity in TNBC cells was weakened. Upregulated COL10A1 in TNBC cells generated more junctions and longer total segments between vascular endothelial cells, and promoted angiogenesis of the cells, and thus enhanced the tumorigenesis. In TNBC, it was found that COL10A1 might affect epithelial-mesenchymal transition (EMT) of the cells through Wnt/ß-catenin signaling pathway by the detection of the related pathway proteins. COL10A1 is highly expressed in TNBC, and its high expression leads to poor OS and RFS. COL10A1 may enhance TNBC cell proliferation, migration and tumor-related angiogenesis, and promote tumorigenesis in vivo via Wnt/ß-catenin signaling.
Asunto(s)
Movimiento Celular , Proliferación Celular , Colágeno Tipo X , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Mama Triple Negativas , Vía de Señalización Wnt , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Humanos , Femenino , Vía de Señalización Wnt/genética , Animales , Ratones , Movimiento Celular/genética , Línea Celular Tumoral , Colágeno Tipo X/genética , Colágeno Tipo X/metabolismo , Pronóstico , Regulación hacia Arriba , Ratones Desnudos , beta Catenina/metabolismo , beta Catenina/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Persona de Mediana Edad , Ratones Endogámicos BALB CRESUMEN
Understanding limiting factors of phenotypic plasticity is essential given its critical role in shaping biological adaptation and evolution in changing environments. It has been proposed that the pattern of phenotypic correlation could constrain trait plasticity. However, the interplay between phenotypic plasticity and integration has remained contentious. We experimentally simulated climate warming in juveniles of three subalpine tree species by exposing them to three-year in situ open-top chambers (OTCs), and then measured functional plasticity of 72 eco-physiological traits to evaluate whether phenotypic integration constituted an intrinsic constraint to plasticity. We also tested the relationship between the differences in plasticity and maintenance in trait integration. Phenotypic plasticity was positively associated with integration in deciduous tree species under warming. The difference in the plasticity of two paired traits could predict their integration in different environments, where traits displaying more similar plasticity were more likely to be correlated. Our study showed no indication that phenotypic integration constrained plasticity. More importantly, we demonstrated that differential plasticity between traits might result in a notable reorganization of the trait associations, and that warming commonly induced a tighter phenotype. Our study provides new insights into the interplay between phenotypic plasticity and integration in subalpine trees under climate warming.
Asunto(s)
Fenotipo , Carácter Cuantitativo Heredable , Árboles , Árboles/fisiología , Cambio Climático , Adaptación Fisiológica , Calentamiento GlobalRESUMEN
Cytochrome P450 3A4 (CYP3A4), a key enzyme, is pivotal in metabolizing approximately half of the drugs used clinically. The genetic polymorphism of the CYP3A4 gene significantly influences individual variations in drug metabolism, potentially leading to severe adverse drug reactions (ADRs). In this study, we conducted a genetic analysis on CYP3A4 gene in 1163 Chinese Han individuals to identify the genetic variations that might affect their drug metabolism capabilities. For this purpose, a multiplex polymerase chain reaction (PCR) amplicon sequencing technique was developed, enabling us to perform the genotyping of CYP3A4 gene efficiently and economically on a large scale. As a result, a total of 14 CYP3A4 allelic variants were identified, comprising six previously reported alleles and eight new nonsynonymous variants that were nominated as new allelic variants *39-*46 by the PharmVar Association. Further, functional assessments of these novel CYP3A4 variants were undertaken by coexpressing them with cytochromes P450 oxidoreductase (CYPOR) in Saccharomyces cerevisiae microsomes. Immunoblot analysis indicated that with the exception of CYP3A4.40 and CYP3A4.45, the protein expression levels of most new variants were similar to that of the wild-type CYP3A4.1 in yeast cells. To evaluate their catalytic activities, midazolam was used as a probe drug. The results showed that variant CYP3A4.45 had almost no catalytic activity, whereas the other variants exhibited significantly reduced drug metabolism abilities. This suggests that the majority of the CYP3A4 variants identified in the Chinese population possess markedly altered capacities for drug metabolism. SIGNIFICANCE STATEMENT: In this study, we established a multiplex polymerase chain reaction (PCR) amplicon sequencing method and detected the maximum number of new CYP3A4 variants in a single ethnic population. Additionally, we performed the functional characterizations of these eight novel CYP3A4 allele variants in vitro. This study not only contributes to the understanding of CYP3A4 genetic polymorphism in the Chinese Han population but also holds substantial reference value for their potential clinical applications in personalized medicine.
Asunto(s)
Citocromo P-450 CYP3A , Polimorfismo Genético , Humanos , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Alelos , Polimorfismo Genético/genética , Microsomas/metabolismo , ChinaRESUMEN
Outer membrane protein A (OmpA), a major component of outer membrane proteins in gram-negative bacteria, is considered to be an important virulence factor in various pathogenic bacteria, but its underlying mechanisms involved in pathogenic process of Edwardsiella tarda has not yet been fully elucidated. E. tarda is an important facultative intracellular pathogen with a broad host range. This bacterium could survive and replicate in macrophages as an escape mechanism from the host defense. To address the functions of OmpA and its potential roles in the pathogenesis of E. tarda, ΔompA mutant strain and ΔompA-C complementary strain were constructed by the allelic exchange method in this study. Here, we demonstrate that the abilities of motility, biofilm formation and adherence to RAW264.7 cells of ΔompA were significantly impaired, although there was no difference in growth between wild-type (WT) strain and ΔompA. Moreover, inactivation of ompA rendered E. tarda more sensitive to oxidative, heat shock and osmotic stress, which simulate the in vivo conditions that E. tarda encounters within the intramacrophage environment. Consist with this observation, ΔompA was also found to be markedly attenuated for growth within macrophages. In addition, compared with the WT strain, ΔompA activated macrophages to release more inflammatory mediators, including tumor necrosis factor alpha (TNF-α), reactive oxygen species (ROS) and nitric oxide (NO). However, flow cytometry analysis revealed that ΔompA induced less apoptosis of RAW264.7 cells as compared with WT strain, characterized by decreased Annexin V binding and the activation of caspase-3. Overall, our findings suggest an importance of OmpA to E. tarda and provide the first comprehensive insight into its functions and potential roles in the pathogenesis of E. tarda, including its effect on interaction with macrophages.
Asunto(s)
Adhesión Bacteriana , Proteínas de la Membrana Bacteriana Externa , Biopelículas , Edwardsiella tarda , Macrófagos , Factores de Virulencia , Edwardsiella tarda/patogenicidad , Edwardsiella tarda/genética , Edwardsiella tarda/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Animales , Ratones , Macrófagos/microbiología , Macrófagos/inmunología , Células RAW 264.7 , Biopelículas/crecimiento & desarrollo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Virulencia , Apoptosis , Infecciones por Enterobacteriaceae/microbiología , Factor de Necrosis Tumoral alfa/metabolismo , Estrés Oxidativo , Eliminación de Gen , Locomoción , Citocinas/metabolismo , Óxido Nítrico/metabolismo , Presión OsmóticaRESUMEN
Carbon allocation has been fundamental for long-lived trees to survive cold stress at their upper elevation range limit. Although carbon allocation between non-structural carbohydrate (NSC) storage and structural growth is well-documented, it still remains unclear how ongoing climate warming influences these processes, particularly whether these two processes will shift in parallel or respond divergently to warming. Using a combination of an in situ downward-transplant warming experiment and an ex situ chamber warming treatment, we investigated how subalpine fir trees at their upper elevation limit coordinated carbon allocation priority among different sinks (e.g., NSC storage and structural growth) at whole-tree level in response to elevated temperature. We found that transplanted individuals from the upper elevation limit to lower elevations generally induced an increase in specific leaf area, but there was no detected evidence of warming effect on leaf-level saturated photosynthetic rates. Additionally, our results challenged the expectation that climate warming will accelerate structural carbon accumulation while maintaining NSC constant. Instead, individuals favored allocating available carbon to NSC storage over structural growth after 1 year of warming, despite the amplification in total biomass encouraged by both in situ and ex situ experimental warming. Unexpectedly, continued warming drove a regime shift in carbon allocation priority, which was manifested in the increase of NSC storage in synchrony to structural growth enhancement. These findings imply that climate warming would release trees at their cold edge from C-conservative allocation strategy of storage over structural growth. Thus, understanding the strategical regulation of the carbon allocation priority and the distinctive function of carbon sink components is of great implication for predicting tree fate in the future climate warming.