Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 371
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 110(7): 1162-1176, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37352861

RESUMEN

Large-scale genetic association studies have identified multiple susceptibility loci for nasopharyngeal carcinoma (NPC), but the underlying biological mechanisms remain to be explored. To gain insights into the genetic etiology of NPC, we conducted a follow-up study encompassing 6,907 cases and 10,472 controls and identified two additional NPC susceptibility loci, 9q22.33 (rs1867277; OR = 0.74, 95% CI = 0.68-0.81, p = 3.08 × 10-11) and 17q12 (rs226241; OR = 1.42, 95% CI = 1.26-1.60, p = 1.62 × 10-8). The two additional loci, together with two previously reported genome-wide significant loci, 5p15.33 and 9p21.3, were investigated by high-throughput sequencing for chromatin accessibility, histone modification, and promoter capture Hi-C (PCHi-C) profiling. Using luciferase reporter assays and CRISPR interference (CRISPRi) to validate the functional profiling, we identified PHF2 at locus 9q22.33 as a susceptibility gene. PHF2 encodes a histone demethylase and acts as a tumor suppressor. The risk alleles of the functional SNPs reduced the expression of the target gene PHF2 by inhibiting the enhancer activity of its long-range (4.3 Mb) cis-regulatory element, which promoted proliferation of NPC cells. In addition, we identified CDKN2B-AS1 as a susceptibility gene at locus 9p21.3, and the NPC risk allele of the functional SNP rs2069418 promoted the expression of CDKN2B-AS1 by increasing its enhancer activity. The overexpression of CDKN2B-AS1 facilitated proliferation of NPC cells. In summary, we identified functional SNPs and NPC susceptibility genes, which provides additional explanations for the genetic association signals and helps to uncover the underlying genetic etiology of NPC development.


Asunto(s)
Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patología , Estudios de Seguimiento , Predisposición Genética a la Enfermedad , Estudios de Asociación Genética , Polimorfismo de Nucleótido Simple/genética , Proteínas de Homeodominio/genética
2.
EMBO J ; 39(1): e102190, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31755573

RESUMEN

TGF-ß signaling pathway plays a key role in breast cancer metastasis. Recent studies suggest that TGF-ß regulates tumor progression and invasion not only via transcriptional regulation, but also via translational regulation. Using both bioinformatics and experimental tools, we identified a micropeptide CIP2A-BP encoded by LINC00665, whose translation was downregulated by TGF-ß in breast cancer cell lines. Using TNBC cell lines, we showed that TGF-ß-activated Smad signaling pathway induced the expression of translation inhibitory protein 4E-BP1, which inhibited eukaryote translation initiation factor elF4E, leading to reduced translation of CIP2A-BP from LINC00665. CIP2A-BP directly binds tumor oncogene CIP2A to replace PP2A's B56γ subunit, thus releasing PP2A activity, which inhibits PI3K/AKT/NFκB pathway, resulting in decreased expression levels of MMP-2, MMP-9, and Snail. Downregulation of CIP2A-BP in TNBC patients was significantly associated with metastasis and poor overall survival. In the MMTV-PyMT model, either introducing CIP2A-BP gene or direct injection of CIP2A-BP micropeptide significantly reduced lung metastases and improved overall survival. In conclusion, we provide evidence that CIP2A-BP is both a prognostic marker and a novel therapeutic target for TNBC.


Asunto(s)
Autoantígenos/metabolismo , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Fragmentos de Péptidos/metabolismo , ARN Largo no Codificante/genética , Neoplasias de la Mama Triple Negativas/prevención & control , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Apoptosis , Autoantígenos/genética , Biomarcadores de Tumor/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Progresión de la Enfermedad , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Ratones , Ratones Desnudos , Invasividad Neoplásica , Fragmentos de Péptidos/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Pronóstico , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Proteína Smad4/genética , Proteína Smad4/metabolismo , Tasa de Supervivencia , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
3.
BMC Plant Biol ; 24(1): 199, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38500044

RESUMEN

BACKGROUND: The selenomethionine cycle (SeMTC) is a crucial pathway for the metabolism of selenium. The basic bioinformatics and functions of four enzymes involved in the cycle including S-adenosyl-methionine synthase (MAT), SAM-dependent methyltransferase (MTase), S-adenosyl-homocysteine hydrolase (SAHH) and methionine synthase (MTR), have been extensively reported in many eukaryotes. The identification and functional analyses of SeMTC genes/proteins in Cardamine hupingshanensis and their response to selenium stress have not yet been reported. RESULTS: In this study, 45 genes involved in SeMTC were identified in the C. hupingshanensis genome. Phylogenetic analysis showed that seven genes from ChMAT were clustered into four branches, twenty-seven genes from ChCOMT were clustered into two branches, four genes from ChSAHH were clustered into two branches, and seven genes from ChMTR were clustered into three branches. These genes were resided on 16 chromosomes. Gene structure and homologous protein modeling analysis illustrated that proteins in the same family are relatively conserved and have similar functions. Molecular docking showed that the affinity of SeMTC enzymes for selenium metabolites was higher than that for sulfur metabolites. The key active site residues identified for ChMAT were Ala269 and Lys273, while Leu221/231 and Gly207/249 were determined as the crucial residues for ChCOMT. For ChSAHH, the essential active site residues were found to be Asn87, Asp139 and Thr206/207/208/325. Ile204, Ser111/329/377, Asp70/206/254, and His329/332/380 were identified as the critical active site residues for ChMTR. In addition, the results of the expression levels of four enzymes under selenium stress revealed that ChMAT3-1 genes were upregulated approximately 18-fold, ChCOMT9-1 was upregulated approximately 38.7-fold, ChSAHH1-2 was upregulated approximately 11.6-fold, and ChMTR3-2 genes were upregulated approximately 28-fold. These verified that SeMTC enzymes were involved in response to selenium stress to varying degrees. CONCLUSIONS: The results of this research are instrumental for further functional investigation of SeMTC in C. hupingshanensis. This also lays a solid foundation for deeper investigations into the physiological and biochemical mechanisms underlying selenium metabolism in plants.


Asunto(s)
Cardamine , Selenio , Selenometionina , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa , Simulación del Acoplamiento Molecular , Secuencia de Aminoácidos , Filogenia , Proteínas
4.
J Transl Med ; 22(1): 47, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216996

RESUMEN

BACKGROUND: Lung cancer is the most prevalent cancer worldwide, with non-small cell lung cancer (NSCLC) accounting for 85% of all cases. Circular RNAs(circRNA) play crucial roles in regulating the progression of lung cancer. Despite the identification of a large number of circRNAs, their expression patterns, functions, and mechanisms of action in NSCLC development remain unclear.This study aims to investigate the transcriptional expressions, functions, and potential mechanisms of circRNA hsa_circ_0050386 in NSCLC. METHODS: Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized for the analysis of hsa_circ_0050386 expression. Cell proliferation was detected using the IncuCyte Live Cell Analysis System and clone formation assays. Migration and invasion of NSCLC cells were evaluated through Transwell assays. Flow cytometry was performed to assay cell cycle and apoptosis. Western blot was used to investigate protein expression. Protein binding analysis was conducted by employing pull-down assays, RNA immunoprecipitation (RIP), and mass spectrometry. The role of hsa_circ_0050386 in vivo was evaluated through the use of a xenograft model. RESULTS: The study discovered that hsa_circ_0050386 displayed lower expression levels in NSCLC tissues when compared to adjacent normal tissues. Patients exhibiting lower levels of hsa_circ_0050386 expression exhibited an inverse correlation with the Clinical Stage, T-stage, and M-stage of NSCLC. Functionally, hsa_circ_0050386 suppressed the proliferation and invasion of NSCLC cells both in vitro and in vivo. A comprehensive examination exposed the interaction between hsa_circ_0050386 and RNA binding protein Serine and arginine-rich splicing factor 3 (SRSF3), resulting in the down-regulation of Fibronectin 1 (FN1) expression, which inhibits the progression of NSCLC. CONCLUSIONS: Our study shows that hsa_circ_0050386 suppresses the malignant biological behavior of NSCLC cells by down-regulating the expression of FN1, and may serve as a potential biomarker and therapeutic target for NSCLC treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Proliferación Celular/genética , Fibronectinas , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , ARN/genética , ARN Circular/genética , Factores de Empalme Serina-Arginina
5.
Chemistry ; : e202401784, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866701

RESUMEN

Boron difluoride (BF2) complexes with asymmetrical N,N'-bidentate ligands have received increasing attention due to their fascinating properties and broad applications. They are generally constructed in two steps: ligand formation, followed by boron complexation. This review focuses on categorizing these BF2 complexes based on the key synthetic strategies that have been applied in the ligand formation steps. The post-functionalization, properties and applications of different types of BF2 complexes are presented. Their challenges and opportunities are also discussed. This should help the future rational design and synthesis of BF2 complexes with intriguing properties and practical applications.

6.
Chemistry ; 30(12): e202303930, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38117253

RESUMEN

Herein, we developed a one-pot procedure to synthesize novel fulvene-[b]-fused BODIPYs from α-(2-alkynylphenyl)-pyrrole and acylpyrrole, using 5-exo cyclization as the key transformation. Compared to benzene-[b]-fused BODIPYs, although they have similar chemical compositions, their structures and properties significantly differ from each other, which can be attributed to the less aromaticity of the fulvene linker than benzene. Notably, fulvene-[b]-fused BODIPY 1 b exhibits helical-twisted core skeleton, intensified red-shifted absorption, and peak fluorescence. In addition, the pathway of this one-pot reaction and the mechanism of POCl3 mediated 5-exo cyclization have been proposed by a combining experimental and computational study.

7.
Plant Cell Rep ; 43(6): 148, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775862

RESUMEN

KEY MESSAGE: Identification of selenium stress-responsive expression and molecular docking of serine acetyltransferase (SAT) and O-acetyl serine (thiol) lyase (OASTL) in Cardamine hupingshanensis. A complex coupled with serine acetyltransferase (SAT) and O-acetyl serine (thiol) lyase (OASTL) is the key enzyme that catalyzes selenocysteine (Sec) synthesis in plants. The functions of SAT and OASTL genes were identified in some plants, but it is still unclear whether SAT and OASTL are involved in the selenium metabolic pathway in Cardamine hupingshanensis. In this study, genome-wide identification and comparative analysis of ChSATs and ChOASTLs were performed. The eight ChSAT genes were divided into three branches, and the thirteen ChOASTL genes were divided into four branches by phylogenetic analysis and sequence alignment, indicating the evolutionary conservation of the gene structure and its association with other plant species. qRT-PCR analysis showed that the ChSAT and ChOASTL genes were differentially expressed in different tissues under various selenium levels, suggesting their important roles in Sec synthesis. The ChSAT1;2 and ChOASTLA1;2 were silenced by the VIGS system to investigate their involvement in selenium metabolites in C. hupingshanensis. The findings contribute to understanding the gene functions of ChSATs and ChOASTLs in the selenium stress and provide a reference for further exploration of the selenium metabolic pathway in plants.


Asunto(s)
Cardamine , Regulación de la Expresión Génica de las Plantas , Simulación del Acoplamiento Molecular , Filogenia , Proteínas de Plantas , Selenio , Selenio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cardamine/genética , Cardamine/metabolismo , Redes y Vías Metabólicas/genética , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Liasas/metabolismo , Liasas/genética
8.
BMC Surg ; 24(1): 93, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509508

RESUMEN

BACKGROUND: Endoscopic mucosal resection (EMR) appears to be a promising technique for the removal of sessile serrated polyps (SSPs) ≥ 10 mm. To assess the effectiveness and safety of EMR for removing SSPs ≥ 10 mm, we conducted this systematic review and meta-analysis. METHODS: We conducted a thorough search of Embase, PubMed, Cochrane, and Web of Science databases for relevant studies reporting on EMR of SSPs ≥ 10 mm, up until December 2023. Our primary endpoints of interest were rates of technical success, residual SSPs, and adverse events (AE). RESULTS: Our search identified 426 articles, of which 14 studies with 2262 SSPs were included for analysis. The rates of technical success, AEs, and residual SSPs were 100%, 2.0%, and 3.1%, respectively. Subgroup analysis showed that the technical success rates were the same for polyps 10-19 and 20 mm, and en-bloc and piecemeal resection. Residual SSPs rates were similar in en-bloc and piecemeal resection, but much lower in cold EMR (1.0% vs. 4.2%, P = 0.034). AEs rates were reduced in cold EMR compared to hot EMR (0% vs. 2.9%, P = 0.168), in polyps 10-19 mm compared to 20 mm (0% vs. 4.1%, P = 0.255), and in piecemeal resection compared to en-bloc (0% vs. 0.7%, P = 0.169). CONCLUSIONS: EMR is an effective and safe technique for removing SSPs ≥ 10 mm. The therapeutic effect of cold EMR is superior to that of hot EMR, with a lower incidence of adverse effects. PROSPERO REGISTRATION NUMBER: CRD42023388959.


Asunto(s)
Adenoma , Pólipos del Colon , Neoplasias Colorrectales , Resección Endoscópica de la Mucosa , Neoplasias Gastrointestinales , Humanos , Pólipos del Colon/cirugía , Pólipos del Colon/etiología , Colonoscopía/métodos , Resección Endoscópica de la Mucosa/efectos adversos , Adenoma/cirugía , Neoplasias Colorrectales/cirugía
9.
Neuroimage ; 269: 119916, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36736638

RESUMEN

There is growing evidence that blood-oxygen-level-dependent (BOLD) activity in the white matter (WM) can be detected by functional magnetic resonance imaging (fMRI). However, the functional relevance and significance of WM BOLD signals remain controversial. Here we investigated whether 7T BOLD fMRI can reveal fine-scale functional organizations of a WM bundle. Population receptive field (pRF) analyses of the 7T retinotopy dataset from the Human Connectome Project revealed clear contralateral retinotopic organizations of two visual WM bundles: the optic radiation (OR) and the vertical occipital fasciculus (VOF). The retinotopic maps of OR are highly consistent with post-mortem dissections and diffusion tractographies, while the VOF maps are compatible with the dorsal and ventral visual areas connected by the WM. Similar to the grey matter (GM) visual areas, both WM bundles show over-representations of the central visual field and increasing pRF size with eccentricity. Hemodynamic response functions of visual WM were slower and wider compared with those of GM areas. These findings clearly demonstrate that WM BOLD at 7 Tesla is closely coupled with neural activity related to axons, encoding highly specific information that can be used to characterize fine-scale functional organizations of a WM bundle.


Asunto(s)
Sustancia Blanca , Humanos , Sustancia Blanca/fisiología , Campos Visuales , Imagen por Resonancia Magnética , Imagen de Difusión Tensora/métodos , Sustancia Gris
10.
Eur J Neurosci ; 58(6): 3503-3517, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37547942

RESUMEN

Visual context modulates perception of local orientation attributes. These spatially very localised effects are considered to correspond to specific excitatory-inhibitory connectivity patterns of early visual areas as V1, creating perceptual tilt repulsion and attraction effects. Here, orientation misperception of small Gabor stimuli was used as a probe of this computational structure by sampling a large spatio-orientation space to reveal expected asymmetries due to the underlying neuronal processing. Surprisingly, the results showed a regular iso-orientation pattern of nearby location effects whose reference point was globally modulated by the spatial structure, without any complex interactions between local positions and orientation. This pattern of results was confirmed by the two perceptual parameters of bias and discrimination ability. Furthermore, the response times to stimulus configuration displayed variations that further provided evidence of how multiple early visual stages affect perception of simple stimuli.


Asunto(s)
Neuronas , Orientación , Estimulación Luminosa/métodos , Orientación/fisiología , Neuronas/fisiología , Tiempo de Reacción/fisiología , Percepción , Percepción Visual/fisiología , Percepción Espacial/fisiología
11.
Bioconjug Chem ; 34(2): 302-325, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36748912

RESUMEN

The overuse of antibiotics has led to the emergence of a large number of antibiotic-resistant genes in bacteria, and increasing evidence indicates that a fungicide with an antibacterial mechanism different from that of antibiotics is needed. Quaternary ammonium salts (QASs) are a biparental substance with good antibacterial properties that kills bacteria through simple electrostatic adsorption and insertion into cell membranes/altering of cell membrane permeability. Therefore, the probability of bacteria developing drug resistance is greatly reduced. In this review, we focus on the synthesis and application of single-chain QASs, double-chain QASs, heterocyclic QASs, and gemini QASs (GQASs). Some possible structure-function relationships of QASs are also summarized. As such, we hope this review will provide insight for researchers to explore more applications of QASs in the field of antimicrobials with the aim of developing systems for clinical applications.


Asunto(s)
Antiinfecciosos , Sales (Química) , Compuestos de Amonio Cuaternario/farmacología , Antibacterianos/farmacología , Bacterias , Pruebas de Sensibilidad Microbiana
12.
Opt Express ; 31(16): 25515-25526, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37710436

RESUMEN

We demonstrated all-silicon IQ modulators (IQMs) operating at 120-GBaud 16-QAM with suitable bandwidth, and output power. We required optical signal-to-noise-ratio (rOSNR) that have promising potential to be used in 800-Gbps small-form-factor pluggable transceivers for data center interconnection. First, we tested an IQM chip using discrete drivers and achieved a per-polarization TX output power of -18.74 dBm and an rOSNR of 23.51 dB over a 100-km standard SMF. Notably, a low BER of 1.4e-3 was obtained using our SiP IQM chip without employing nonlinear compensation, optical equalization, or an ultra-wide-bandwidth, high-ENOB OMA. Furthermore, we investigated the performance of a 3D packaged transmitter by emulating its frequency response using an IQM chip, discrete drivers, and a programmable optical filter. With a laser power of 17 dBm, we achieved a per-polarization output power of -15.64 dBm and an rOSNR of 23.35 dB.

13.
Int J Mol Sci ; 24(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37762445

RESUMEN

Accurate identification of potential drug-target interactions (DTIs) is a crucial task in drug development and repositioning. Despite the remarkable progress achieved in recent years, improving the performance of DTI prediction still presents significant challenges. In this study, we propose a novel end-to-end deep learning model called AMMVF-DTI (attention mechanism and multi-view fusion), which leverages a multi-head self-attention mechanism to explore varying degrees of interaction between drugs and target proteins. More importantly, AMMVF-DTI extracts interactive features between drugs and proteins from both node-level and graph-level embeddings, enabling a more effective modeling of DTIs. This advantage is generally lacking in existing DTI prediction models. Consequently, when compared to many of the start-of-the-art methods, AMMVF-DTI demonstrated excellent performance on the human, C. elegans, and DrugBank baseline datasets, which can be attributed to its ability to incorporate interactive information and mine features from both local and global structures. The results from additional ablation experiments also confirmed the importance of each module in our AMMVF-DTI model. Finally, a case study is presented utilizing our model for COVID-19-related DTI prediction. We believe the AMMVF-DTI model can not only achieve reasonable accuracy in DTI prediction, but also provide insights into the understanding of potential interactions between drugs and targets.


Asunto(s)
COVID-19 , Humanos , Animales , Caenorhabditis elegans , Desarrollo de Medicamentos , Interacciones Farmacológicas
14.
Molecules ; 28(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37298918

RESUMEN

Flavonoids are major active small-molecule compounds in bamboo leaves, which can be easily obtained from the bamboo leaves extraction residues (BLER) after the polysaccharides extraction. Six macroporous resins with different properties were screened to prepare and enrich isoorientin (IOR), orientin (OR), vitexin (VI), and isovitexin (IVI) from BLER, and the XAD-7HP resin with the best adsorption and desorption performance was selected for further evaluation. Based on the static adsorption experiments, the experimental results showed that the adsorption isotherm fitted well with the Langmuir isotherm model, and the adsorption process was better explained by the pseudo-second-order kinetic model. After the dynamic trial of resin column chromatography, 20 bed volume (BV) of upload sample and 60% ethanol as eluting solvent was used in a lab scale-up separation, and the results demonstrated that the content of four flavonoids could be increased by 4.5-fold, with recoveries between 72.86 and 88.21%. In addition, chlorogenic acid (CA) with purity of 95.1% was obtained in water-eluted parts during dynamic resin separation and further purified by high-speed countercurrent chromatography (HSCCC). In conclusion, this rapid and efficient method can provide a reference to utilize BLER to produce high-value-added food and pharmaceutical products.


Asunto(s)
Ácido Clorogénico , Distribución en Contracorriente , Distribución en Contracorriente/métodos , Extractos Vegetales/química , Flavonoides/química , Hojas de la Planta/química , Adsorción , Resinas de Plantas/análisis , Resinas Sintéticas/química , Cromatografía Líquida de Alta Presión
15.
J Biol Chem ; 297(5): 101182, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34534547

RESUMEN

Circular RNAs (circRNAs) are a novel class of widespread noncoding RNAs that regulate gene expression in mammals. Recent studies demonstrate that functional peptides can be encoded by short open reading frames in noncoding RNAs, including circRNAs. However, the role of circRNAs in various physiological and pathological states, such as cancer, is not well understood. In this study, through deep RNA sequencing on human endometrial cancer (EC) samples and their paired adjacent normal tissues, we uncovered that the circRNA hsa-circ-0000437 is significantly reduced in EC compared with matched paracancerous tissue. The hsa-circ-0000437 contains a short open reading frame encoding a functional peptide termed CORO1C-47aa. Overexpression of CORO1C-47aa is capable of inhibiting angiogenesis at the initiation stage by suppressing endothelial cell proliferation, migration, and differentiation through competition with transcription factor TACC3 to bind to ARNT and suppress VEGF. CORO1C-47aa directly bound to ARNT through the PAS-B domain, and blocking the association between ARNT and TACC3, which led to reduced expression of VEGF, ultimately lead to reduced angiogenesis. The antitumor effects of CORO1C-47aa on EC progression suggest that CORO1C-47aa has potential value in anticarcinoma therapies and warrants further investigation.


Asunto(s)
Neoplasias Endometriales , Regulación Neoplásica de la Expresión Génica , Proteínas de Microfilamentos , Proteínas de Neoplasias , Neovascularización Patológica , Péptidos , ARN Circular , ARN Neoplásico , Animales , Neoplasias Endometriales/irrigación sanguínea , Neoplasias Endometriales/genética , Neoplasias Endometriales/metabolismo , Neoplasias Endometriales/patología , Femenino , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas de Microfilamentos/biosíntesis , Proteínas de Microfilamentos/genética , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Péptidos/genética , Péptidos/metabolismo , ARN Circular/biosíntesis , ARN Circular/genética , ARN Neoplásico/biosíntesis , ARN Neoplásico/genética
16.
BMC Plant Biol ; 22(1): 491, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36253724

RESUMEN

BACKGROUND: ATP sulfurylase (ATPS) is a crucial enzyme for the selenate assimilation pathway in plants. RESULTS: In this study, genome-wide and comparative analyses of ATPS in Cardamine hupingshanensis, including sequence and structural analyses, were performed. The expression of ChATPS gene family members in C. hupingshanensis under selenium (Se) stress was also investigated, and our results suggest that ChATPS1-2 play key roles in the response to Se stress. Nine ATPS genes were found from C. hupingshanensis, which share highly conserved sequences with ATPS from Arabidopsis thaliana. In addition, we performed molecular docking of ATP sulfurylase in complex with compounds ATP, selenate, selenite, sulfate, and sulfite. ChAPS3-1 was found to have stronger binding energies with all compounds tested. Among these complexes, amino acid residues Arg, Gly, Ser, Glu, and Asn were commonly present. CONCLUSION: Our study reveals the molecular mechanism of C. hupingshanensis ATP sulfurylase interacting with selenate, which is essential for understanding selenium assimilation. This information will guide further studies on the function of the ChATPS gene family in the selenium stress response and lay the foundation for the selenium metabolic pathway in higher plants.


Asunto(s)
Arabidopsis , Cardamine , Selenio , Adenosina Trifosfato , Aminoácidos/metabolismo , Arabidopsis/metabolismo , Cardamine/metabolismo , Simulación del Acoplamiento Molecular , Ácido Selénico , Ácido Selenioso/metabolismo , Selenio/metabolismo , Sulfato Adenililtransferasa/química , Sulfato Adenililtransferasa/genética , Sulfato Adenililtransferasa/metabolismo , Sulfatos/metabolismo , Sulfitos/metabolismo
17.
Cancer Cell Int ; 22(1): 181, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35524253

RESUMEN

BACKGROUND: Long noncoding RNAs (lncRNAs) are emerging as master regulators for gene expression and thus play a vital role in human tumorigenesis and progression. But the involvement of novel lncRNAs in non-small cell lung cancer (NSCLC) remains largely unelucidated. METHODS: A total of 170 NSCLC and their adjacent non-tumor tissues were enrolled to detect the expression of Lnc-LSAMP-1 by RT-qPCR. The effects of Lnc-LSAMP-1 on cell proliferation, migration, invasion and drug-sensitivity were determined by in vitro and in vivo experiments. The proteins that interact with Lnc-LSAMP-1were confirmed by RNA pull-down assay. RNA-sequencing were used to identify the potential targets of Lnc-LSAMP-1 in NSCLC. RESULTS: We found that Lnc-LSAMP-1 was significantly down-regulated in 170 cases of NSCLC tissues when compared to their adjacent non-cancerous tissues. Loss expression of Lnc-LSAMP-1 was notably correlated with unfavorable prognosis of NSCLC patients. The ectopic expression of Lnc-LSAMP-1 drastically inhibited lung cancer cell proliferation, viability, invasion and migration ability, arrested cell cycle and facilitated apoptosis. Chemotherapy sensitization experiments showed that over-expressed Lnc-LSAMP-1 enhanced the inhibition of cell proliferation induced by TKI. Mechanistically, Lnc-LSAMP-1-LSAMP formed a complex which could protect the degradation of LSAMP gene, and thus exerted crucial roles in NSCLC progression and TKI targeted treatment. CONCLUSIONS: Consequently, our findings highlight the function and prognostic value of Lnc-LSAMP-1 in NSCLC and provide potential novel therapeutic targets and prognostic biomarkers for patients with NSCLC.

18.
Arch Toxicol ; 96(2): 625-637, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34783864

RESUMEN

Contrast perception is a fundamental visual ability that allows us to distinguish objects from the background. However, whether it is perturbed by chronic exposure to environmental xenoestrogen, bisphenol A (BPA), is still elusive. Here, we used adult cats to explore BPA-induced changes in contrast sensitivity (CS) and its underlying neuronal coding mechanism. Behavioral results showed that 14 days of BPA exposure (0.4 mg/kg/day) was sufficient to induce CS declines at the tested spatial frequencies (0.05-2 cycles/deg) in all four cats. Furthermore, based on multi-channel electrophysiological recording and interneuronal correlation analysis, we found that the BPA-exposed cats exhibited an obvious up-regulation in noise correlation in the primary visual cortex (area 17, A17), thus providing a population neuronal coding basis for their perceptual dysfunction. Moreover, single neuron responses in A17 of BPA-exposed cats revealed a slight but marked decrease in CS compared to that of control cats. Additionally, these neuronal responses presented an overt decrease in signal-to-noise ratio, accompanied by increased trial-to-trial response variability (i.e., noise). To some extent, these neuron population and unit dysfunctions in A17 of BPA-exposed cats were attributable to decreased response activity of fast-spiking neurons. Together, our findings demonstrate that chronic BPA exposure restricts contrast perception, in response to impoverished neuronal coding ability in A17.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Neuronas/efectos de los fármacos , Fenoles/toxicidad , Corteza Visual Primaria/efectos de los fármacos , Percepción Visual/efectos de los fármacos , Animales , Compuestos de Bencidrilo/administración & dosificación , Gatos , Sensibilidad de Contraste/efectos de los fármacos , Fenómenos Electrofisiológicos , Neuronas/patología , Fenoles/administración & dosificación , Corteza Visual Primaria/patología , Relación Señal-Ruido
19.
Molecules ; 27(21)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36364204

RESUMEN

Zhejiang Ophiopogonjaponicus (ZOJ) is a specific variety of Ophiopogon japonicus with characteristic steroidal saponins and homoisoflavonoids, which are also main pharmacodynamic constituents with clinical effects, including curing inflammation and cardiovascular diseases. However, few analysis methods were applied to simultaneously and quantitatively determine two kinds of its constituents, and hazardous organic solvents are mostly used for extraction. In this study, a new validated simultaneous extraction and determination method for four characteristic steroidal saponins and homoisoflavonoids in ZOJ was established by ionic liquid-ultrasonic extraction (IL-UAE) combined with HPLC-DAD-ELSD analysis, which can be used for the quality control of ZOJ. Chromatographic separation was performed with a DAD wavelength at 296 nm, and the ELSD parameters of the drift tube temperature (DTT), atomizer temperature (AT), and nitrogen gas pressure (NGP) were set at 20% heating power, 70 °C, and 25 psi, respectively. The optimal IL-UAE conditions were 1 mol/L [Bmim]CF3SO3 aqueous solution, a liquid-material ratio of 40 mL/g, and an ultrasonic time of 60 min. The proposed method is reliable, reproducible, and accurate, which were verified with real sample assays. Consequently, this work will be helpful for the quality control of ZOJ. It can also present a promising reference for the simultaneous extraction and determination of different kinds of constituents in other medicinal plants.


Asunto(s)
Medicamentos Herbarios Chinos , Ophiopogon , Saponinas , Ophiopogon/química , Medicamentos Herbarios Chinos/química , Saponinas/química , Cromatografía Líquida de Alta Presión/métodos
20.
Opt Lett ; 46(11): 2690-2693, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34061089

RESUMEN

Improving the imaging speed of multi-parametric photoacoustic microscopy (PAM) is essential to leveraging its impact in biomedicine. However, to avoid temporal overlap, the A-line rate is limited by the acoustic speed in biological tissues to a few megahertz. Moreover, to achieve high-speed PAM of the oxygen saturation of hemoglobin, the stimulated Raman scattering effect in optical fibers has been widely used to generate 558 nm from a commercial 532 nm laser for dual-wavelength excitation. However, the fiber length for effective wavelength conversion is typically short, corresponding to a small time delay that leads to a significant overlap of the A-lines acquired at the two wavelengths. Increasing the fiber length extends the time interval but limits the pulse energy at 558 nm. In this Letter, we report a conditional generative adversarial network-based approach that enables temporal unmixing of photoacoustic A-line signals with an interval as short as ${\sim}{38}\;{\rm ns}$, breaking the physical limit on the A-line rate. Moreover, this deep learning approach allows the use of multi-spectral laser pulses for PAM excitation, addressing the insufficient energy of monochromatic laser pulses. This technique lays the foundation for ultrahigh-speed multi-parametric PAM.


Asunto(s)
Aprendizaje Profundo , Técnicas Fotoacústicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA