RESUMEN
Comprehending endangered species' spatial distribution in response to global climate change (GCC) is of great importance for formulating adaptive management, conservation, and restoration plans. However, it is regrettable that previous studies mainly focused on geoclimatic species, while neglected climate-sensitive subterranean taxa to a large extent, which clearly hampered the discovery of universal principles. In view of this, taking the endemic troglophile riverine fish Onychostoma macrolepis (Bleeker, 1871) as an example, we constructed a MaxEnt (maximum-entropy) model to predict how the spatial distribution of this endangered fish would respond to future climate changes (three Global Climate Models × two Shared Socio-economic Pathways × three future time nodes) based on painstakingly collected species occurrence data and a set of bioclimatic variables, including WorldClim and ENVIREM. Model results showed that variables related to temperature rather than precipitation were more important in determining the geographic distribution of this rare and endemic fish. In addition, the suitable areas and their distribution centroids of O. macrolepis would shrink (average: 20,901.75 km2) and move toward the northeast or northwest within the study area (i.e. China). Linking our results with this species' limited dispersion potential and unique habitat requirements (i.e. karst landform is essential), we thus recommended in situ conservation to protect this relict.
Asunto(s)
Cambio Climático , Ecosistema , Animales , Especies en Peligro de Extinción , Temperatura , ChinaRESUMEN
Drought stress (DS) is the most important abiotic stress affecting yield and quality of tea worldwide. DS causes oxidative stress to cells due to the accumulation of reactive oxygen species (ROS). As non-enzymatic antioxidants, tea catechins can scavenge excess ROS in response to DS. Further, catechin accumulation contributes to the formation of oxidative polymerization products (e.g. theaflavins and thearubigins) that improve the quality of black tea. However, there are no systematic reports on the response of tea catechins to DS. First, we reviewed the available literature on the response of tea plants to DS. Second, we summarized the current knowledge of ROS production in tea leaves under DS and typical antioxidant response mechanisms. Third, we conducted a detailed review of the changes in catechin levels in tea under different drought conditions. We found that the total amounts of catechin and o-quinone increased under DS conditions. We propose that the possible mechanisms underlying tea catechin accumulation under DS conditions include (i) autotrophic formation of o-quinone, (ii) polymerization of proanthocyanidins that directly scavenge excess ROS, and (iii) formation of metal ion complexes and by influencing the antioxidant systems that indirectly eliminate excess ROS. Finally, we discuss ways of potentially improving black tea quality using drought before picking in the summer/fall dry season. In summary, we mainly discuss the antioxidant mechanisms of tea catechins under DS and the possibility of using drought to improve black tea quality. Our review provides a theoretical basis for the production of high-quality black tea under DS conditions. © 2021 Society of Chemical Industry.