Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Mol Genet ; 33(11): 969-980, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38483349

RESUMEN

RNA methylation of N6-methyladenosine (m6A) is emerging as a fundamental regulator of every aspect of RNA biology. RNA methylation directly impacts protein production to achieve quick modulation of dynamic biological processes. However, whether RNA methylation regulates mitochondrial function is not known, especially in neuronal cells which require a high energy supply and quick reactive responses. Here we show that m6A RNA methylation regulates mitochondrial function through promoting nuclear-encoded mitochondrial complex subunit RNA translation. Conditional genetic knockout of m6A RNA methyltransferase Mettl14 (Methyltransferase like 14) by Nestin-Cre together with metabolomic analysis reveals that Mettl14 knockout-induced m6A depletion significantly downregulates metabolites related to energy metabolism. Furthermore, transcriptome-wide RNA methylation profiling of wild type and Mettl14 knockout mouse brains by m6A-Seq shows enrichment of methylation on mitochondria-related RNA. Importantly, loss of m6A leads to a significant reduction in mitochondrial respiratory capacity and membrane potential. These functional defects are paralleled by the reduced expression of mitochondrial electron transport chain complexes, as well as decreased mitochondrial super-complex assembly and activity. Mechanistically, m6A depletion decreases the translational efficiency of methylated RNA encoding mitochondrial complex subunits through reducing their association with polysomes, while not affecting RNA stability. Together, these findings reveal a novel role for RNA methylation in regulating mitochondrial function. Given that mitochondrial dysfunction and RNA methylation have been increasingly implicate in neurodegenerative disorders, our findings not only provide insights into fundamental mechanisms regulating mitochondrial function, but also open up new avenues for understanding the pathogenesis of neurological diseases.


Asunto(s)
Adenosina , Metiltransferasas , Ratones Noqueados , Mitocondrias , Animales , Mitocondrias/metabolismo , Mitocondrias/genética , Ratones , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , ARN/genética , ARN/metabolismo , Humanos , Biosíntesis de Proteínas , Metabolismo Energético/genética , Neuronas/metabolismo , Metilación de ARN
2.
STAR Protoc ; 5(1): 102855, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38300798

RESUMEN

RNA-binding proteins (RBPs) regulate gene expression both co-transcriptionally and post-transcriptionally. Here, we provide a protocol for photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation followed by next-generation sequencing (PAR-CLIP-seq). PAR-CLIP-seq is a transcriptome-scale technique for identifying in vivo binding sites of RBPs at the single-nucleotide level. We detail procedures for the establishment of FLAG-RBM33 stable cell line, the sequencing library preparation, and the data analysis.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Proteínas de Unión al ARN , Humanos , Células HEK293 , Sitios de Unión , Proteínas de Unión al ARN/metabolismo , Transcriptoma
3.
bioRxiv ; 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38328119

RESUMEN

As the most abundant glial cells in the CNS, astrocytes dynamically respond to neurotoxic stress, however, the key molecular regulators controlling the inflammatory status of these sentinels during neurotoxic stress have remained elusive. Herein, we demonstrate that the m6A epitranscriptomic mRNA modification tightly regulates the pro-inflammatory functions of astrocytes. Specifically, the astrocytic neurotoxic stresser, manganese (Mn), downregulated the m6A reader YTHDF2 in human and mouse astrocyte cultures and in the mouse brain. Functionally, YTHDF2 knockdown augmented, while its overexpression dampened, neurotoxic stress induced proinflammatory response, suggesting YTHDF2 serves as a key upstream regulator of inflammatory responses in astrocytes. Mechnistically, YTHDF2 RIP-sequencing identified MAP2K4 ( MKK4; SEK1) mRNA as a YTHDF2 target influencing inflammatory signaling. Our target validation revealed Mn-exposed astrocytes mediates proinflammatory response by activating the phosphorylation of SEK1, JNK, and cJUN signaling. Collectively, YTHDF2 serves a key upstream 'molecular switch' controlling SEK1( MAP2K4 )-JNK-cJUN proinflammatory signaling in astrocytes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA