Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(15): 8360-8365, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32220955

RESUMEN

Natural and man-made robotic systems use the interfacial tension between two fluids to support dense objects on liquid surfaces. Here, we show that coacervate-encased droplets of an aqueous polymer solution can be hung from the surface of a less dense aqueous polymer solution using surface tension. The forces acting on and the shapes of the hanging droplets can be controlled. Sacs with homogeneous and heterogeneous surfaces are hung from the surface and, by capillary forces, form well-ordered arrays. Locomotion and rotation can be achieved by embedding magnetic microparticles within the assemblies. Direct contact of the droplet with air enables in situ manipulation and compartmentalized cascading chemical reactions with selective transport. Applications including functional microreactors, motors, and biomimetic robots are evident.

2.
Nano Lett ; 22(13): 5538-5543, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35766622

RESUMEN

Ferrofluids (FFs) can adapt their shape to a magnetic field. However, they cannot maintain their shape when the magnetic field is removed. Here, with a magneto-responsive and reconfigurable interfacial self-assembly (MRRIS) process, we show that FFs can be structured by a magnetic field and maintain their shape, like solids, after removing the magnetic field. The competing self-assembly of magnetic and nonmagnetic nanoparticles at the liquid interface endow FFs with both reconfigurability and structural stability. By manipulating the external magnetic field, we show that it is possible to "write" and "erase" the shape of the FFs remotely and repeatedly. To gain an in-depth understanding of the effect of MRRIS on the structure of FFs, we systematically study the shape variation of these liquids under both the static and dynamic magnetic fields. Our study provides a simple yet novel way of manipulating FFs and opens opportunities for the fabrication of all-liquid devices.


Asunto(s)
Coloides , Nanopartículas , Coloides/química , Campos Magnéticos , Magnetismo , Nanopartículas/química
3.
Angew Chem Int Ed Engl ; 62(36): e202307713, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37452006

RESUMEN

Dynamic covalent bonding has emerged as a mean by which stresses in a network can be relaxed. Here, the strength of the bonding of ligands to nanoparticles at the interface between two immiscible liquids affect the same results in jammed assemblies of nanoparticle surfactants. Beyond a critical degree of overcrowding induced by the compression of jammed interfacial assemblies, the bonding of ligands to nanoparticles (NPs) can be broken, resulting in a desorption of the NPs from the interface. This reduces the areal density of nanoparticle surfactants at the interface, allowing the assemblies to relax, not to a fluid state but rather another jammed state. The relaxation of the wrinkles caused by the compression reflects the tendency of these assemblies to eliminate areas of high curvature, favoring a more planar geometry. This enabled the generation of giant vesicular and multivesicular structures from these assemblies.

4.
Small ; 14(39): e1802107, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30118584

RESUMEN

Droplets containing ternary mixtures can spontaneously phase-separate into high-order structures upon a change in composition, which provides an alternative strategy to form multiphase droplets. However, existing strategies always involve nonaqueous solvents that limit the potential applications of the resulting multiple droplets, such as encapsulation of biomolecules. Here, a robust approach to achieve high-order emulsion drops with an all-aqueous nature from two aqueous phases by osmosis-induced phase separation on a microfluidic platform is presented. This technique is enabled by the existence of an interface of the two aqueous phases and phase separation caused by an osmolality difference between the two phases. The complexity of emulsion drops induced by phase separation could be controlled by varying the initial concentration of solutes and is systematically illustrated in a state diagram. In particular, this technique is utilized to successfully achieve high-order all-aqueous droplets in a different aqueous two-phase system. The proposed method is simple since it only requires two initial aqueous solutions for generating multilayered, organic-solvent-free all-aqueous emulsion drops, and thus these multiphase emulsion drops can be further tailored to serve as highly biocompatible material templates.

5.
Soft Matter ; 14(33): 6883-6891, 2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-30087980

RESUMEN

We observe and characterize the crystallization of atactic polystyrenes (PS) of nearly oligomeric Mw using atomic force microscopy. We find that the low Mw polystyrene exhibits observable crystals on the surface. The crystals appear to be a few nm thick and nm to microns wide. These crystals grow at all temperatures less than ∼290 K. Melting of crystals was probed over an extended temperature range, and some fraction of the crystals start to melt at 302 K, but some fraction persist to higher temperatures and do not exhibit complete melting until 343 K. The tacticity of the molecules is tested with NMR spectroscopy and found to be atactic. We suggest that the crystals form due simply to the distribution of isomerism along the molecule which necessarily leaves some fraction of the molecules with uniform stereoregularity. This natural crystallinity may be related to previously observed and not definitively explained gel formation in atactic PS (a-PS), as well as cluster formation. The measurements are compared with the theory by Semenov (Macromolecules, 2009, 42, 6761) and together suggest that such crystallinity is possible over a wide range of polymerization index (N), and is limited only by the vanishingly small volume fractions and sluggish growth.

6.
Soft Matter ; 14(36): 7324-7334, 2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-29796450

RESUMEN

There is indirect evidence that the dynamics of a polymer near a free surface are enhanced compared with the bulk but there are few studies of how dynamics varies with depth. ß-Detected nuclear spin relaxation of implanted 8Li+ has been used to directly probe the temperature and depth dependence of the γ-relaxation mode, which is due to phenyl rings undergoing restricted rotation, in thin films of atactic deuterated polystyrene (PS-d8) and determine how the depth dependence of dynamics is affected by sample processing, such as annealing, floating on water and the inclusion of a surfactant, and by the presence of a buried interface. The activation energy for the γ-relaxation process is lower near the free surface. Annealing the PS-d8 films and then immersing in water to mimic the floating procedure used to transfer films had negligible effects on the thickness of the region near the free surface with enhanced mobility. Measurements on a bilayer film indicate enhanced phenyl ring dynamics near the buried interface compared with a single film at the same depth. PS-d8 films annealed with the surfactant sodium dodecyl sulfate (SDS) deposited on the surface show enhanced dynamics in the bulk compared with a pure PS-d8 film and a PS-d8 film where the SDS was washed away. There is less contrast between the surface and bulk in the SDS-treated sample, which could account for the elimination of the Tg confinement effect observed in films containing SDS [Chen and Torkelson, Polymer, 2016, 87, 226].

7.
Adv Mater ; 34(51): e2205649, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36222390

RESUMEN

Living cells comprise diverse subcellular structures, such as cytoskeletal networks, which can regulate essential cellular activities through dynamic assembly and synergistic interactions with biomolecular condensates. Despite extensive efforts, reproducing viscoelastic networks for modulating biomolecular condensates in synthetic systems remains challenging. Here, a new aqueous two-phase system (ATPS) is proposed, which consists of poly(N-isopropylacrylamide) (PNIPAM) and dextran (DEX), to construct viscoelastic networks capable of being assembled and dissociated dynamically to regulate the self-assembly of condensates on-demand. Viscoelastic networks are generated using liquid-liquid phase-separated DEX droplets as templates and the following liquid-to-solid transition of the PNIPAM-rich phase. The resulting networks can dissolve liquid fused in sarcoma (FUS) condensates within 5 min. This work demonstrates rich phase-separation behaviors in a single ATPS through incorporating stimuli-responsive polymers. The concept can potentially be applied to other macromolecules through other stimuli to develop materials with rich phase behaviors and hierarchical structures.

8.
ACS Nano ; 16(9): 13761-13770, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35904791

RESUMEN

Soft robots, made from elastomers, easily bend and flex, but deformability constraints severely limit navigation through and within narrow, confined spaces. Using aqueous two-phase systems we print water-in-water constructs that, by aqueous phase-separation-induced self-assembly, produce ultrasoft liquid robots, termed aquabots, comprised of hierarchical structures that span in length scale from the nanoscopic to microsciopic, that are beyond the resolution limits of printing and overcome the deformability barrier. The exterior of the compartmentalized membranes is easily functionalized, for example, by binding enzymes, catalytic nanoparticles, and magnetic nanoparticles that impart sensitive magnetic responsiveness. These ultrasoft aquabots can adapt their shape for gripping and transporting objects and can be used for targeted photocatalysis, delivery, and release in confined and tortuous spaces. These biocompatible, multicompartmental, and multifunctional aquabots can be readily applied to medical micromanipulation, targeted cargo delivery, tissue engineering, and biomimetics.


Asunto(s)
Biomimética , Robótica , Elastómeros/química , Agua
9.
ACS Nano ; 14(9): 11215-11224, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32515582

RESUMEN

Producing artificial multicellular structures to process multistep cascade reactions and mimic the fundamental aspects of living systems is an outstanding challenge. Highly biocompatible, artificial systems consisting of all-aqueous, compartmentalized multicellular systems have yet to be realized. Here, a rapid multilevel compartmentalization of an all-aqueous system where a 3D sheet of subcolloidosomes encloses a mother colloidosome by interfacial phase separation is demonstrated. These spatially organized multicellular structures are termed "blastosomes" since they are similar to blastula in appearance. The barrier to nanoparticle assembly at the water-water interface is overcome using oppositely charged polyelectrolytes that form a coacervate-nanoparticle-composite network. The conditions required to trigger interfacial phase separation and form blastosomes are quantified in a mapped state diagram. We show a versatile model for constructing artificial multicellular spheroids in all-aqueous systems. The rapid interfacial assembly of charged particles and polyelectrolytes can lock in nonequilibrium shapes of water, which also enables top-down technologies, such as 3D printing and microfluidics, to program flexible compartmentalized structures.


Asunto(s)
Nanopartículas , Agua , Microfluídica , Polielectrolitos , Esferoides Celulares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA