Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Comput Biol ; 20(7): e1012257, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38959262

RESUMEN

Neuromechanical studies investigate how the nervous system interacts with the musculoskeletal (MSK) system to generate volitional movements. Such studies have been supported by simulation models that provide insights into variables that cannot be measured experimentally and allow a large number of conditions to be tested before the experimental analysis. However, current simulation models of electromyography (EMG), a core physiological signal in neuromechanical analyses, remain either limited in accuracy and conditions or are computationally heavy to apply. Here, we provide a computational platform to enable future work to overcome these limitations by presenting NeuroMotion, an open-source simulator that can modularly test a variety of approaches to the full-spectrum synthesis of EMG signals during voluntary movements. We demonstrate NeuroMotion using three sample modules. The first module is an upper-limb MSK model with OpenSim API to estimate the muscle fibre lengths and muscle activations during movements. The second module is BioMime, a deep neural network-based EMG generator that receives nonstationary physiological parameter inputs, like the afore-estimated muscle fibre lengths, and efficiently outputs motor unit action potentials (MUAPs). The third module is a motor unit pool model that transforms the muscle activations into discharge timings of motor units. The discharge timings are convolved with the output of BioMime to simulate EMG signals during the movement. We first show how MUAP waveforms change during different levels of physiological parameter variations and different movements. We then show that the synthetic EMG signals during two-degree-of-freedom hand and wrist movements can be used to augment experimental data for regressing joint angles. Ridge regressors trained on the synthetic dataset were directly used to predict joint angles from experimental data. In this way, NeuroMotion was able to generate full-spectrum EMG for the first use-case of human forearm electrophysiology during voluntary hand, wrist, and forearm movements. All intermediate variables are available, which allows the user to study cause-effect relationships in the complex neuromechanical system, fast iterate algorithms before collecting experimental data, and validate algorithms that estimate non-measurable parameters in experiments. We expect this modular platform will enable validation of generative EMG models, complement experimental approaches and empower neuromechanical research.


Asunto(s)
Biología Computacional , Electromiografía , Movimiento , Músculo Esquelético , Electromiografía/métodos , Humanos , Movimiento/fisiología , Músculo Esquelético/fisiología , Redes Neurales de la Computación , Fenómenos Biomecánicos/fisiología , Simulación por Computador , Potenciales de Acción/fisiología , Modelos Neurológicos
2.
J Lipid Res ; : 100610, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094771

RESUMEN

Dyslipidemia may induce chronic kidney disease and trigger both ferroptosis and endoplasmic reticulum (ER) stress, but the instigating factors are incompletely understood. We tested the hypothesis that different models of dyslipidemia engage distinct kidney injury mechanisms. Wild-type (WT) or proprotein-convertase subtilisin/kexin type-9 (PCSK9)-gain-of-function (GOF) Ossabaw pigs were fed with a 6-months normal (ND) or high-fat (HFD) diet (n=5-6 each). Renal function and fat deposition were studied in-vivo using CT, and blood and kidney tissue studied ex-vivo for lipid profile, systemic and renal vein free fatty acids (FFA) levels, and renal injury mechanisms including lipid peroxidation (LPO), ferroptosis, and ER stress. Compared with WT-ND pigs, both HFD and PCSK9-GOF elevated triglyceride levels, which were highest in WT-HFD, whereas total and low-density lipoprotein (LDL) cholesterol levels rose only in PCSK9-GOF pigs, particularly in PCSK9-GOF/HFD. The HFD groups had worse kidney function than ND. The WT-HFD kidneys retained more FFA than other groups, but all kidneys developed fibrosis. Furthermore, HFD-induced ferroptosis in WT-HFD indicated by increased free iron, and LPO, and decreased glutathione peroxidase-4 mRNA expression, while PCSK9-GOF induced ER stress with upregulated GRP94 and CHOP protein expression. In vitro, PK1 cells treated with palmitic acid (PA) and oxidized-LDL to mimic HFD and PCSK9-GOF showed similar trends to those observed in vivo. Taken together, HFD-induced hypertriglyceridemia promotes renal FFA retention and ferroptosis, whereas PCSK9-GOF-induced hypercholesterolemia elicits ER stress, both resulting in renal fibrosis. These observations suggest different targets for preventing and treating renal fibrosis in subjects with specific types of dyslipidemia.

3.
Opt Express ; 32(7): 11873-11885, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38571025

RESUMEN

In recent years, the rotational Doppler effect (RDE) has been widely used in rotational motion measurement. However, the performance of existing detection systems based on the RDE are generally limited by the drastic reduction of signal-to-noise ratio (SNR) due to the influence of atmospheric turbulence, partial obscuration of the vortex beam (VB) during propagation, and misalignment between the optical axis of VB and the rotational axis of the object, which poses a challenge for practical applications. In this paper, we proposed a coherent detection method of the RDE measurement based on triple Fourier transform. First, the weak RDE signal in backscattered light is amplified by using the balanced homodyne detection method, and the amplified signal still retains the same characteristic of severe broadening in the frequency domain as the original signal. Furthermore, we proposed the triple Fourier transform to extract the broadened RDE frequency shift signal after the coherent amplification. The proposed method significantly improves the SNR of RDE measurement and facilitates the accurate extraction of rotational speed, which helps to further improve the RDE detection range and promote its practical application.

5.
Int J Biol Macromol ; 267(Pt 1): 131482, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599423

RESUMEN

The aim of this study was to explore the dynamic changes in the physicochemical properties of Laiyang pear residue polysaccharide (LPP) during in vitro digestion, as well as its protective effect on the intestines. Monosaccharide composition and molecular weight analysis showed that there was no significant change in LPP during the oral digestion stage. However, during the gastric and intestinal digestion stages, the glycosidic bonds of LPP were broken, leading to the dissociation of large molecular aggregates and a significant increase in reducing sugar content (CR) accompanied by a decrease in molecular weight. In addition, LPP exerted the intestinal protective ability via inhibiting gut inflammation, improving intestinal barrier, and regulating intestinal flora in DSS-induced mice. Specifically, LPP mitigated DSS-induced intestinal pathological damage of mice via enhancing intestinal barrier integrity and upregulating expressions of TJ proteins, and suppressed inflammation by inhibiting NF-κB signaling axis. Furthermore, LPP decreased the ratio of Firmicutes/Bacteroidetes, increased the relative abundance of Lactobacillus, and altered the diversity and the composition of gut microbiota in DSS-induced mice. Therefore, LPP had the potential to be a functional food that improved gut microbiota environment to enhance health and prevent diseases, such as a prebiotic.


Asunto(s)
Sulfato de Dextran , Microbioma Gastrointestinal , Polisacáridos , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Polisacáridos/farmacología , Polisacáridos/química , Ratones , Sulfato de Dextran/efectos adversos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Pyrus/química , Inflamación/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Digestión/efectos de los fármacos , Masculino , FN-kappa B/metabolismo
6.
PLoS One ; 19(1): e0293260, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38165993

RESUMEN

Three Parallel Rivers is one of the world's biodiversity hotspots. However, the research on myxomycetes diversity is scarce in this area. Random sampling was used to investigate myxomycetes' diversity and distribution characteristics in this area. One hundred and seventeen species, including three varieties, were obtained, belonging to 28 genera, nine families, and six orders, with Arcyria cinerea and Physarum viride being the dominant species. Moreover, four species and one variety were first reported in China. Twenty-six species and one variety were first reported in Yunnan Province. The species' most commonly utilized substrate for fruiting bodies was decaying wood, and Cribraria was the dominant genus. The species diversity was most abundant in mixed broadleaf-conifer forests. Species similarity between coniferous and broad-leaved forests was much higher than the pairwise comparison of other forest types. NMDS analysis shows that substrate and forest types had insignificant effects on myxomycetes communities, while river valley had a significant effect. The myxomycetes community similarity between river valleys is unrelated to geographical proximity.


Asunto(s)
Mixomicetos , Tracheophyta , Humanos , Ríos , China , Bosques , Biodiversidad , Árboles
7.
J Neural Eng ; 21(4)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39029496

RESUMEN

Objective.Brain switches provide a tangible solution to asynchronized brain-computer interface, which decodes user intention without a pre-programmed structure. However, most brain switches based on electroencephalography signals have high false positive rates (FPRs), resulting in less practicality. This research aims to improve the operating mode and usability of the brain switch.Approach.Here, we propose a novel virtual physical model-based brain switch that leverages periodic active modulation. An optimization problem of minimizing the triggering time subject to a required FPR is formulated, numerical and analytical approximate solutions are obtained based on the model.Main results.Our motor imagery (MI)-based brain switch can reach 0.8FP/h FPR with a median triggering time of 58 s. We evaluated the proposed brain switch during online device control, and their average FPRs substantially outperformed the conventional brain switches in the literature. We further improved the proposed brain switch with the Common Spatial Pattern (CSP) and optimization method. An average FPR of 0.3 FPs/h was obtained for the MI-CSP-based brain switch, and the average triggering time improved to 21.6 s.Significance.This study provides a new approach that could significantly reduce the brain switch's FPR to less than 1 Fps/h, which was less than 10% of the FPR (decreasing by more than a magnitude of order) by other endogenous methods, and the reaction time was comparable to the state-of-the-art approaches. This represents a significant advancement over the current non-invasive asynchronous BCI and will open widespread avenues for translating BCI towards clinical applications.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía , Imaginación , Humanos , Imaginación/fisiología , Electroencefalografía/métodos , Encéfalo/fisiología , Modelos Neurológicos , Movimiento/fisiología
8.
Artículo en Inglés | MEDLINE | ID: mdl-39141455

RESUMEN

Numerical models of electromyography (EMG) signals have provided a huge contribution to our fundamental understanding of human neurophysiology and remain a central pillar of motor neuroscience and the development of human-machine interfaces. However, while modern biophysical simulations based on finite element methods (FEMs) are highly accurate, they are extremely computationally expensive and thus are generally limited to modeling static systems such as isometrically contracting limbs. As a solution to this problem, we propose to use a conditional generative model to mimic the output of an advanced numerical model. To this end, we present BioMime, a conditional generative neural network trained adversarially to generate motor unit (MU) activation potential waveforms under a wide variety of volume conductor parameters. We demonstrate the ability of such a model to predictively interpolate between a much smaller number of numerical model's outputs with a high accuracy. Consequently, the computational load is dramatically reduced, which allows the rapid simulation of EMG signals during truly dynamic and naturalistic movements.

9.
Cell Death Dis ; 15(6): 387, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824145

RESUMEN

Obesity exacerbates tissue degeneration and compromises the integrity and reparative potential of mesenchymal stem/stromal cells (MSCs), but the underlying mechanisms have not been sufficiently elucidated. Mitochondria modulate the viability, plasticity, proliferative capacity, and differentiation potential of MSCs. We hypothesized that alterations in the 5-hydroxymethylcytosine (5hmC) profile of mitochondria-related genes may mediate obesity-driven dysfunction of human adipose-derived MSCs. MSCs were harvested from abdominal subcutaneous fat of obese and age/sex-matched non-obese subjects (n = 5 each). The 5hmC profile and expression of nuclear-encoded mitochondrial genes were examined by hydroxymethylated DNA immunoprecipitation sequencing (h MeDIP-seq) and mRNA-seq, respectively. MSC mitochondrial structure (electron microscopy) and function, metabolomics, proliferation, and neurogenic differentiation were evaluated in vitro, before and after epigenetic modulation. hMeDIP-seq identified 99 peaks of hyper-hydroxymethylation and 150 peaks of hypo-hydroxymethylation in nuclear-encoded mitochondrial genes from Obese- versus Non-obese-MSCs. Integrated hMeDIP-seq/mRNA-seq analysis identified a select group of overlapping (altered levels of both 5hmC and mRNA) nuclear-encoded mitochondrial genes involved in ATP production, redox activity, cell proliferation, migration, fatty acid metabolism, and neuronal development. Furthermore, Obese-MSCs exhibited decreased mitochondrial matrix density, membrane potential, and levels of fatty acid metabolites, increased superoxide production, and impaired neuronal differentiation, which improved with epigenetic modulation. Obesity elicits epigenetic changes in mitochondria-related genes in human adipose-derived MSCs, accompanied by structural and functional changes in their mitochondria and impaired fatty acid metabolism and neurogenic differentiation capacity. These observations may assist in developing novel therapies to preserve the potential of MSCs for tissue repair and regeneration in obese individuals.


Asunto(s)
Tejido Adiposo , Diferenciación Celular , Epigénesis Genética , Células Madre Mesenquimatosas , Mitocondrias , Obesidad , Humanos , Células Madre Mesenquimatosas/metabolismo , Obesidad/metabolismo , Obesidad/genética , Obesidad/patología , Mitocondrias/metabolismo , Tejido Adiposo/metabolismo , Diferenciación Celular/genética , Femenino , Masculino , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Adulto , Persona de Mediana Edad , Proliferación Celular
10.
Cell Signal ; 117: 111096, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38346528

RESUMEN

IL-36 is known to mediate inflammation and fibrosis. Nevertheless, IL-36 signalling axis has also been implicated in cancer, although understanding of exact contribution of IL-36 to cancer progression is very limited, partly due to existence of multiple IL-36 ligands with agonistic and antagonistic function. Here we explored the role of IL-36 in oral squamous cell carcinoma (OSCC). Firstly, we analyzed expression of IL-36 ligands and receptor and found that the expression of IL-36γ was significantly higher in head and neck cancer (HNSCC) than that of normal tissues, and that the high expression of IL-36γ predicted poor clinical outcomes. Secondly, we investigated the direct effect of IL-36γ on OSCC cells and found that IL-36γ stimulated proliferation of OSCC cells with high expression of IL-36R expression. Interestingly, IL-36γ also promoted migration of OSCC cells with low to high IL-36R expression. Critically, both proliferation and migration of OSCC cells induced by IL-36γ were abrogated by anti-IL-36R mAb. Fittingly, RNA sequence analysis revealed that IL-36γ regulated genes involved in cell cycle and cell division. In summary, our results showed that IL-36γ can be a tumor-promoting factor, and targeting of IL-36R signalling may be a beneficial targeted therapy for patients with abnormal IL-36 signalling.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Interleucina-1/metabolismo , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello , Proliferación Celular , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA