Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Pestic Biochem Physiol ; 203: 106005, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084800

RESUMEN

Odorant-binding proteins (OBPs) play key roles in host plant location by insects, and can accordingly serve as important targets for the development of attractants. In this study, we detected the high expression of SlitOBP34 in male antennae of Spodoptera litura. Subsequently, the fluorescence competitive binding experiments displayed that the SlitOBP34 protein has binding affinity for different ligands. Then, protein-ligand interaction analyses found the presence of six amino acid residues may serve as key recognition sites. Further electroantennographic and biobehavioral assessments revealed that the electrophysiological responses of male antennae were evoked in response to stimulation with the six identified host volatiles, and that these volatiles attracted male moths to varying extents. Notably, low concentrations of benzaldehyde, 1-hexanol, and cis-3-hexenyl acetate were found to have significant attractant effects on male moths, thereby identifying these three host volatiles as potential candidates for the development of male attractants. These findings advance our current understanding of the olfactory-encoded mechanisms of host plants selection in S. litura and have enabled us to develop novel adult attractants for controlling the pest in the future.


Asunto(s)
Antenas de Artrópodos , Proteínas de Insectos , Receptores Odorantes , Spodoptera , Compuestos Orgánicos Volátiles , Animales , Spodoptera/efectos de los fármacos , Masculino , Receptores Odorantes/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/farmacología , Antenas de Artrópodos/metabolismo , Hexanoles/farmacología , Hexanoles/metabolismo , Acetatos/metabolismo , Acetatos/farmacología , Benzaldehídos
2.
Pestic Biochem Physiol ; 204: 106101, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277423

RESUMEN

Riptortus pedestris (Hemiptera: Alydidae), a common agricultural pest, is the major causative agent of "soybean staygreen." However, the interactions between chemosensory proteins (CSPs) in R. pedestris and host plant volatiles have yet to be comprehensively studied. In this study, we performed real-time fluorescence quantitative polymerase chain reaction (PCR) to analyze the antennal expression of RpedCSP22 and subsequently analyzed the interactions between 21 soybean volatiles, five aggregation pheromones, and RpedCSP22 protein in vitro using a protein expression system, molecular docking, site-directed mutagenesis, and fluorescence competitive binding experiments. The RpedCSP22 protein showed binding affinity to three soybean volatiles (benzaldehyde, 4-ethylbenzaldehyde, and 1-octene-3-ol), with optimal binding observed under neutral pH conditions, and lost binding ability after site-directed mutagenesis. In subsequent RNA interference (RNAi) studies, gene silencing was more than 90 %, and in silenced insects, electroantennographic responses were reduced by more than 75 % compared to non-silenced insects. Moreover, Y-tube olfactory behavioral assessments revealed that the attraction of R. pedestris to the three soybean volatiles was significantly attenuated. These findings suggest that RpedCSP22 plays an important role in the recognition of host plant volatiles by R. pedestris andprovides a theoretical basis for the development of novel inhibitors targeting pest behavior.


Asunto(s)
Glycine max , Proteínas de Insectos , Compuestos Orgánicos Volátiles , Animales , Glycine max/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/química , Compuestos Orgánicos Volátiles/metabolismo , Mutagénesis Sitio-Dirigida , Simulación del Acoplamiento Molecular , Hemípteros/metabolismo , Hemípteros/genética , Antenas de Artrópodos/metabolismo , Feromonas/metabolismo , Heterópteros/metabolismo , Heterópteros/genética
3.
Pestic Biochem Physiol ; 201: 105874, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685243

RESUMEN

In insects, chemosensory proteins (CSPs) play an important role in the perception of the external environment and have been widely used for protein-binding characterization. Riptortus pedestris has received increased attention as a potential cause of soybean staygreen syndrome in recent years. In this study, we found that RpedCSP4 expression in the antennae of adult R. pedestris increased with age, with no significant difference in expression level observed between males and females, as determined through quantitative real-time polymerase chain reaction (qRT-PCR). Subsequently, we investigated the ability of RpedCSP4 to bind various ligands (five aggregated pheromone components and 13 soybean volatiles) using a prokaryotic expression system and fluorescence competitive binding assays. We found that RpedCSP4 binds to three aggregated pheromone components of R. pedestris, namely, ((E)-2-hexenyl (Z)-3-hexenoate (E2Z3), (E)-2-hexenyl (E)-2-hexenoate (E2E2), and (E)-2-hexenyl hexenoate (E2HH)), and that its binding capacities are most stable under acidic condition. Finally, the structure and protein-ligand interactions of RpedCSP4 were further analyzed via homology modeling, molecular docking, and targeted mutagenesis experiments. The L29A mutant exhibited a loss of binding ability to these three aggregated pheromone components. Our results show that the olfactory function of RpedCSP4 provides new insights into the binding mechanism of RpedCSPs to aggregation pheromones and contributes to discover new target candidates that will provide a theoretical basis for future population control of R. pedestris.


Asunto(s)
Proteínas de Insectos , Feromonas , Animales , Feromonas/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/química , Masculino , Femenino , Unión Proteica , Heterópteros/metabolismo , Heterópteros/genética
4.
Pestic Biochem Physiol ; 191: 105348, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36963930

RESUMEN

A precise chemosensory system can help insects complete various important behavioral responses by accurately identifying different external odorants. Therefore, deeply understanding the mechanism of insect recognition of important odorants will help us develop efficient and environmentally-friendly behavioral inhibitors. Spodoptera frugiperda is a polyphagous pest that feeds on >350 different host plants worldwide and also harms maize production in China. However, the molecular mechanism of the first step for males to use odorant-binding proteins (OBPs) to recognize sex pheromones remains unclear. Here, we obtained 50 OBPs from the S. frugiperda genome, and the expression level of SfruGOBP1 in females was significantly higher than that in males, whereas SfruGOBP2 displayed male-biased expression. Fluorescence competitive binding assays showed that only SfruGOBP2 showed binding affinities for the four sex pheromones of female S. frugiperda. Subsequently, we identified some key amino acid residues that can participate in the interaction between SfruGOBP2 and sex pheromones using molecular docking and site-directed mutagenesis methods. These findings will help us explore the interaction mechanism between GOBPs and sex pheromones in moths, and provide important target genes for developing new mating inhibitors of S. frugiperda in the future.


Asunto(s)
Mariposas Nocturnas , Atractivos Sexuales , Animales , Femenino , Masculino , Atractivos Sexuales/metabolismo , Spodoptera/genética , Spodoptera/metabolismo , Odorantes , Simulación del Acoplamiento Molecular , Proteínas de Insectos/metabolismo , Mariposas Nocturnas/metabolismo , Feromonas/metabolismo
5.
Pestic Biochem Physiol ; 194: 105513, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532328

RESUMEN

Riptortus pedestris (bean bug), a common soybean pest, has a highly developed olfactory system to find hosts for feeding and oviposition. Chemosensory proteins (CSPs) have been identified in many insect species; however, their functions in R. pedestris remain unknown. In this study, quantitative real time-polymerase chain reaction (qRT-PCR) revealed that the expression of RpedCSP12 in the adult antennae of R. pedestris increased with age. Moreover, a significant difference in the expression levels of RpedCSP12 was observed between male and female antennae at one and three days of age. We also investigated the binding ability of RpedCSP12 to different ligands using a prokaryotic expression system and fluorescence competitive binding assays. We found that RpedCSP12 only bound to one aggregation pheromone, (E)-2-hexenyl (Z)-3-hexenoate, and its binding decreased with increasing pH. Furthermore, homology modelling, molecular docking, and site-directed mutagenesis revealed that the Y27A, L74A, and L85A mutants lost their binding ability to (E)-2-hexenyl (Z)-3-hexenoate. Our findings highlight the olfactory roles of RpedCSP12, providing insights into the mechanism by which RpedCSPs bind to aggregation pheromones. Therefore, our study can be used as a theoretical basis for the population control of R. pedestris in the future.


Asunto(s)
Heterópteros , Feromonas , Animales , Femenino , Simulación del Acoplamiento Molecular , Heterópteros/genética , Glycine max
6.
Insect Mol Biol ; 31(6): 760-771, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35833827

RESUMEN

The bean bug Riptortus pedestris is a notorious insect pest that can damage various crops, especially soybean, in East Asia. In insects, the olfactory system plays a crucial role in host finding and feeding behaviour in which the odorant-binding proteins (OBPs) are believed to be involved in initial step in this system. In this study, we produced the R. pedestris adult antennae-expressed RpedOBP4 protein using a recombinant expression system in E. coli. Fluorescence competitive binding confirmed that RpedOBP4 has binding affinities to 7 of 20 soybean volatiles (ligands), and that a neutral condition is the best environment for it. The binding property of RpedOBP4 to these ligands was further revealed by integrating data from molecular docking, site-directed mutagenesis and ligand binding assays. This demonstrated that five amino acid residues (I30, L33, Y47, I57 and Y121) are involved in the binding process of RpedOBP4 to corresponding ligands. These findings will not only help us to more thoroughly explore the olfactory mechanism of R. pedestris during feeding on soybean, but also lead to the identification of key candidate targets for developing environmental and efficient behaviour inhibitors to prevent population expansion of R. pedestris in the future.


Asunto(s)
Heterópteros , Receptores Odorantes , Animales , Glycine max/metabolismo , Simulación del Acoplamiento Molecular , Escherichia coli , Heterópteros/metabolismo , Receptores Odorantes/metabolismo , Ligandos , Proteínas de Insectos/metabolismo , Unión Proteica
7.
Bull Entomol Res ; 112(1): 78-90, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35225175

RESUMEN

Spodoptera litura is an important pest that causes significant economic damage to numerous crops worldwide. Sex pheromones (SPs) mediate sexual communication in S. litura and show a characteristic degree of rhythmic activity, occurring mainly during the scotophase; however, the specific regulatory mechanisms remain unclear. Here, we employed a genome-wide analysis to identify eight candidate circadian clock genes in S. litura. Sequence characteristics and expression patterns were analyzed. Our results demonstrated that some circadian clock genes might regulate the biosynthesis and perception of SPs by regulating the rhythmic expression of SP biosynthesis-related genes and SP perception-related genes. Interestingly, all potential genes exhibited peak expression in the scotophase, consistent with the SP could mediate courtship and mating behavior in S. litura. Our findings are helpful in elucidating the molecular mechanism by which circadian clock genes regulate sexual communication in S. litura.


Asunto(s)
Relojes Circadianos , Atractivos Sexuales , Animales , Relojes Circadianos/genética , Comunicación , Atractivos Sexuales/metabolismo , Spodoptera/fisiología
8.
Bull Entomol Res ; 112(4): 536-545, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35199636

RESUMEN

Athetis lepigone Möschler (Lepidoptera, Noctuidae) is a common maize pest in Europe and Asia. However, there is no long-term effective management strategy is available yet to suppress its population. Adults rely heavily on olfactory cues to locate their optimal host plants and oviposition sites. Pheromone-binding proteins (PBPs) are believed to be responsible for recognizing and transporting different odorant molecules to interact with receptor membrane proteins. In this study, the ligand-binding specificities of two AlepPBPs (AlepPBP2 and AlepPBP3) for sex pheromone components and host plant (maize) volatiles were measured by fluorescence ligand-binding assay. The results demonstrated that AlepPBP2 had a high affinity with two pheromones [(Z)-7-dodecenyl acetate, Ki = 1.11 ± 0.1 µM, (Z)-9-tetradecenyl acetate, Ki = 1.32 ± 0.15 µM] and ten plant volatiles, including (-)-limonene, α-pinene, myrcene, linalool, benzaldehyde, nonanal, 2-hexanone, 3-hexanone, 2-heptanone and 6-methyl-5-hepten-2-one. In contrast, we found that none of these chemicals could bind to AlepPBP3. Our results clearly show no significant differences in the functional characterization of the binding properties between AlepPBP2 and AlepPBP3 to sex pheromones and host plant volatiles. Furthermore, molecular docking was employed for further detail on some crucial amino acid residues involved in the ligand-binding of AlepPBP2. These findings will provide valuable information about the potential protein binding sites necessary for protein-ligand interactions which appear as attractive targets for the development of novel technologies and management strategies for insect pests.


Asunto(s)
Mariposas Nocturnas , Receptores Odorantes , Atractivos Sexuales , Animales , Proteínas Portadoras/metabolismo , Femenino , Proteínas de Insectos/metabolismo , Ligandos , Simulación del Acoplamiento Molecular , Mariposas Nocturnas/metabolismo , Feromonas/metabolismo , Receptores Odorantes/metabolismo , Atractivos Sexuales/metabolismo , Zea mays/metabolismo
9.
Bull Entomol Res ; 111(4): 454-463, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33632348

RESUMEN

The tobacco cutworm Spodoptera litura (Lepidoptera: Noctuidae) is a polyphagous pest with a highly selective and sensitive chemosensory system involved in complex physiological behaviors such as searching for food sources, feeding, courtship, and oviposition. However, effective management strategies for controlling the insect pest populations under threshold levels are lacking. Therefore, there is an urgent need to formulate eco-friendly pest control strategies based on the disruption of the insect chemosensory system. In this study, we identified 158 putative chemosensory genes based on transcriptomic and genomic data for S. litura, including 45 odorant-binding proteins (OBPs, nine were new), 23 chemosensory proteins (CSPs), 60 odorant receptors (ORs, three were new), and 30 gustatory receptors (GRs, three were new), a number higher than those reported by previous transcriptome studies. Subsequently, we constructed phylogenetic trees based on these genes in moths and analyzed the dynamic expression of various genes in head capsules across larval instars using quantitative real-time polymerase chain reaction. Nine genes-SlitOBP8, SlitOBP9, SlitOBP25, SlitCSP1, SlitCSP7, SlitCSP18, SlitOR34, SlitGR240, and SlitGR242-were highly expressed in the heads of 3- to 5-day-old S. litura larvae. The genes differentially expressed in olfactory organs during larval development might play crucial roles in the chemosensory system of S. litura larvae. Our findings substantially expand the gene inventory for S. litura and present potential target genes for further studies on larval feeding in S. litura.


Asunto(s)
Genes de Insecto , Proteínas de Insectos/genética , Receptores Odorantes/genética , Spodoptera/genética , Animales , Femenino , Cabeza , Proteínas de Insectos/metabolismo , Larva/metabolismo , Masculino , Receptores Odorantes/metabolismo , Spodoptera/metabolismo , Transcriptoma
10.
Genomics ; 112(6): 3846-3855, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32619572

RESUMEN

Insects employ a sensitive chemosensory system to accurately recognize external odorants, which help them to make a behavioral response quickly. Semiothisa cinerearia has caused serious damages to Sophora japonica L. in recent years, and there is still a lack of effective strategy to control the pest. Although the two type-II sex pheromones of S. cinerearia, 6Z,9Z-cis-3,4-epoxy-17:H and 3Z,6Z,9Z-17:H, have been identified for 30 years, the molecular mechanisms underlying the chemosensation of the two sex pheromones are still unknown. Here, we found that there are differences in the types of antennae sensilla between sexes, and revealed 146 putative chemosensory genes in the antennal transcriptome. Among these genes, 11 and 40 of them displayed male-biased and female-biased expression, respectively. Our findings greatly improve the chemosensory gene resources for S. cinerearia and provide a foundation for functional studies of these sex-biased genes on the chemosensation of sex pheromones and on other sex-related behaviors.


Asunto(s)
Mariposas Nocturnas/genética , Receptores Odorantes/genética , Atractivos Sexuales/fisiología , Animales , Femenino , Perfilación de la Expresión Génica , Masculino , Mariposas Nocturnas/fisiología , Filogenia , Transcriptoma
11.
Pestic Biochem Physiol ; 164: 173-182, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32284124

RESUMEN

Athetis lepigone (Alep) is a polyphagous pest native to Europe and Asia that has experienced major outbreaks in the summer maize area of China since 2011 and has shown evidence of resistance to some insecticides. Insect olfaction is crucial for recognition of sex pheromones, host plant volatiles and even insecticides, in which two general-odorant binding proteins (GOBPs) play important roles. To elucidate the functions of GOBPs in A. lepigone, we first expressed the two AlepGOBP proteins in the E. coli expression system. Then, the results of fluorescence competitive binding assays demonstrated that the high binding affinity of AlepGOBP2 with sex pheromones [(Z)-7-dodecenyl acetate (Z7-12:Ac), Ki = 0.65 µM; (Z)-9-tetradecenyl acetate (Z9-14:Ac), Ki = 0.83 µM], two maize plant volatiles [Ocimene, Ki = 9.63 µM; (E)-ß-Farnesene, Ki = 4.76 µM] and two insecticides (Chlorpyrifos Ki =5.61 µM; Phoxim, Ki = 4.38 µM). However, AlepGOBP1 could only bind Ocimene (Ki = 13.0 µM) and two insecticides (Chlorpyrifos Ki =4.46 µM; Phoxim, Ki = 3.27 µM). These results clearly suggest that AlepGOBP1 and AlepGOBP2 differentiate among odorants and other ligands. The molecular docking results further revealed different key residues involved in the ligand binding of AlepGOBPs. In summary, this study provides a foundation for exploring the olfactory mechanism of A. lepigone and identified two potential target genes for the development of highly effective insecticides in the future.


Asunto(s)
Insecticidas , Mariposas Nocturnas , Atractivos Sexuales , Animales , China , Escherichia coli , Proteínas de Insectos , Simulación del Acoplamiento Molecular , Odorantes , Feromonas
12.
Pestic Biochem Physiol ; 156: 152-159, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31027575

RESUMEN

Sex pheromone biosynthesis in moths relies on the activity of multiple enzymes, including Δ9 desaturase, which plays an important role in catalyzing desaturation at the Δ9 position of the carbon chain. However, the physiological function of moth Δ9 desaturase has not been elucidated in vivo. In this study, we used the CRISPR/Cas9 system to knockout the Δ9 desaturase gene (SlitDes11) of Spodoptera litura to analyze its role in sex pheromone biosynthesis. First, through the direct injection of SlitDes11-single guide RNA (sgRNA)/Cas9 messenger RNA into newly laid eggs, gene editing was induced in around 30% of eggs 24 h after injection and was induced in 20.8% of the resulting adult moths. Second, using a sibling-crossing strategy, insects with mutant SlitDes11 (bearing a premature stop codon) were selected, and homozygous mutants were obtained in the G5 generation. Third, pheromone gland extracts of adult female homozygous SlitDes11 mutants were analyzed using Gas chromatography (GC). The results showed that titers of all three ester sex pheromone components; Z9, E11-14:Ac, Z9,E12-14:Ac, and Z9-14:Ac; were reduced by 62.40%, 78.50%, and 72.50%, respectively. This study provides the first direct evidence for the role of SlitDes11 in sex pheromone biosynthesis in S. litura, and indicates the gene could be as potential target to disrupt sexual communication in S. litura for developing a new pollution-free insecticide.


Asunto(s)
Proteínas de Insectos/metabolismo , Atractivos Sexuales/metabolismo , Spodoptera/metabolismo , Estearoil-CoA Desaturasa/metabolismo , Secuencia de Aminoácidos , Animales , Femenino , Mutación de Línea Germinal , Proteínas de Insectos/química , Proteínas de Insectos/genética , Mariposas Nocturnas/metabolismo , Mutación/genética , ARN Mensajero , Alineación de Secuencia
13.
Mol Genet Genomics ; 292(4): 795-809, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28349297

RESUMEN

Species-specific sex pheromone is biosynthesized and released in most female moths as a chemical cue in mating communication. However, information on genes involved in this pathway is limited. The beet armyworm, Spodoptera exigua, is a cosmopolitan agricultural pest that causes severe economic losses to many crops. In China, the female sex pheromones in sex pheromone glands (PGs) of S. exigua have been measured which comprises (Z,E)-9,12-tetradecadienyl acetate, (Z)-9-tetradecen-l-ol, (Z)-9-tetradecenyl acetate, and (Z,E)-9,12-tetradecadien-1-ol in a ratio of 47:18:18:17. Fifty-nine putative genes related to sex pheromone biosynthesis were identified in the present study by sequencing and analyzing the sex pheromone gland (PG) transcriptome of S. exigua. Expression profiles revealed that two desaturase (SexiDes5 and SexiDes11) and three fatty acyl reductase (SexiFAR2, 3, and 9) genes had PG-specific expression, and phylogenetic analysis demonstrated that they clustered with genes known to be involved in pheromone synthesis in other moth species. Our results provide crucial background information that could facilitate the elucidation of sex pheromone biosynthesis pathway of S. exigua as well as other Spodoptera species and help identify potential targets for disrupting sexual communication in S. exigua for developing novel environment-friendly pesticides.


Asunto(s)
Atractivos Sexuales/biosíntesis , Atractivos Sexuales/genética , Spodoptera/genética , Spodoptera/fisiología , Aldehído Oxidorreductasas/genética , Animales , Secuencia de Bases , China , Ácido Graso Desaturasas/genética , Ácidos Grasos Monoinsaturados/metabolismo , Femenino , Regulación de la Expresión Génica , Filogenia , Análisis de Secuencia de ADN , Transcriptoma/genética
14.
BMC Genomics ; 16: 1028, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26626891

RESUMEN

BACKGROUND: Since chemosensory genes play key roles in insect behaviour, they can potentially be used as new targets for pest control. The cabbage beetle, Colaphellus bowringi, is a serious insect pest of cruciferous vegetables in China and other Asian countries. However, a systematic identification of the chemosensory genes expressed in the antennae has not been reported. RESULTS: We assembled the antennal transcriptome of C. bowringi by using Illumina sequencing technology and identified 104 candidate chemosensory genes by analyzing transcriptomic data, which included transcripts encoding 26 odorant-binding proteins (OBPs), 12 chemosensory proteins (CSPs), four sensory neuron membrane proteins (SNMPs), 43 odorant receptors (ORs), nine ionotropic receptors (IRs), and ten gustatory receptors (GRs). The data obtained are similar to those found in other coleopteran species, suggesting that our approach successfully identified the chemosensory genes of C. bowringi. The expression patterns of 43 OR genes, some of which were predominately found in the antenna or associated with sex-biased expression, were analyzed using quantitative real time RT-PCR (qPCR). CONCLUSIONS: Our study revealed that a large number of chemosensory genes are expressed in C. bowringi. These candidate chemosensory genes and their expression profiles in various tissues provide further information on understanding their function in C. bowringi as well as other insects, and identifying potential targets to disrupt the odorant system in C. bowringi so that new methods for pest management can be developed.


Asunto(s)
Antenas de Artrópodos/metabolismo , Escarabajos/genética , Perfilación de la Expresión Génica , Genes de Insecto , Transcriptoma , Animales , Biología Computacional/métodos , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Filogenia
15.
J Agric Food Chem ; 72(21): 12003-12013, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38748811

RESUMEN

Insect gustatory receptors (GRs) aid in the precise identification of deterrent or stimulant compounds associated with food, mating, and egg-laying. Thus, they are promising targets for developing efficient insecticides. Here, 61 GRs in the chemosensory organs of Spodoptera litura larvae and adults were identified. Among them, SlitGR206 exhibited larval labium (LL)-specific expression characteristics. To explore the role of SlitGR206, a bacterial expression system was established to produce high-quality double-stranded RNA (dsRNA) and suppress SlitGR206 expression in LL. Subsequent behavioral assessments revealed that SlitGR206 silencing influenced larval feeding preferences and absorption. Moreover, it was found to reduce the ability of larvae to forage the five crucial host odorants. These findings demonstrate that SlitGR206 likely plays an indirect regulatory role in host recognition, consequently affecting foraging behavior. This provides a crucial foundation for the analysis of functional diversity among insect GRs and the precise development of nucleic acid pesticides in the future.


Asunto(s)
Conducta Alimentaria , Proteínas de Insectos , Larva , Spodoptera , Animales , Spodoptera/metabolismo , Spodoptera/fisiología , Spodoptera/genética , Spodoptera/crecimiento & desarrollo , Larva/metabolismo , Larva/crecimiento & desarrollo , Larva/fisiología , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética
16.
J Agric Food Chem ; 71(16): 6277-6287, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37068196

RESUMEN

In moths, the interactions between chemosensory proteins (CSPs) and sex pheromones have yet to be comprehensively investigated. Here, we examined the function of AlepCSP2 in male Athetis lepigone based on protein expression, molecular docking, site-directed mutagenesis, fluorescence competitive binding analyses, and RNA interference (RNAi) experiments. We found that AlepCSP2 showed strong binding affinity for two sex pheromones and five maize volatiles and that binding was optimal under neutral conditions. Furthermore, we identified six amino acids as being key residues involved in the interaction between AlepCSP2 and multiple ligands. Further RNAi showed that siCSP2 males displayed consistently lower electroantennography responses to two sex pheromones and three maize volatiles at different dosages tested, and the mating rate also decreased significantly by 37.50%. These findings will contribute to characterizing the binding mechanisms of moth CSPs to sex pheromones and host volatiles and also identify unique targets for developing novel pest behavior disruptors.


Asunto(s)
Mariposas Nocturnas , Atractivos Sexuales , Masculino , Animales , Atractivos Sexuales/metabolismo , Zea mays/genética , Zea mays/metabolismo , Simulación del Acoplamiento Molecular , Mariposas Nocturnas/metabolismo , Proteínas de Insectos/metabolismo , Percepción , Feromonas/metabolismo
17.
Pest Manag Sci ; 79(10): 3993-3998, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37269066

RESUMEN

BACKGROUND: The 24-h circadian rhythm is considered crucial for insect sexual communication. However, its molecular mechanisms and signaling pathways, particularly the roles of the clock gene period (Per), remain largely unclear. The sex pheromone communication behavior of Spodoptera litura displays typical circadian rhythm characteristics. Thus, it represents an excellent model for functional analyses of the clock gene Per. RESULTS: In this study, we investigated the potential roles of SlitPer in regulating sex pheromone communication in S. litura using RNA interference, quantitative real-time polymerase chain reactions (qPCR), gas chromatography, and behavioral assays. The qPCR results showed that the expression levels of SlitPer and two desaturase genes (SlitDes5 and SlitDes11) in the siPer group differed significantly at most time points from those in the siNC group. Dynamic variation in the three major sex pheromone titers and calling behavior of S. litura females in the siPer group was disordered. In addition, the mating rates of siPer S. litura females decreased significantly by 33.33%. Oviposition by mated siPer females was substantially reduced by 84.84%. CONCLUSION: These findings provide a fundamental basis for elucidating the molecular mechanism by which Per regulates sex pheromone communication behavior in lepidopteran species. © 2023 Society of Chemical Industry.


Asunto(s)
Atractivos Sexuales , Animales , Femenino , Spodoptera/fisiología , Atractivos Sexuales/farmacología , Atractivos Sexuales/metabolismo , Interferencia de ARN , Comunicación , Proteínas de Insectos/metabolismo
18.
Pest Manag Sci ; 78(1): 52-62, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34418275

RESUMEN

BACKGROUND: Athetis lepigone, a noctuid moth feeding on more than 30 different crops worldwide, has evolved a sophisticated, sensitive, and specific chemosensory system to detect and discriminate exogenous chemicals. Odorant-binding proteins (OBPs) are the most important agent in insect chemosensory systems to be explored as an alternative target for environmentally friendly approaches to pest management. RESULTS: To investigate the olfactory function of A. lepigone OBPs (AlepOBPs), AlepOBP6 was identified and expressed in Escherichia coli. The binding affinity of the recombinant OBP to 20 different ligands was then examined using a competitive binding approach. The results revealed that AlepOBP6 can bind to two sex pheromones and ten maize volatiles, and its conformation stability is pH dependent. We also carried out a structure-function study using different molecular approaches, including structure modeling, molecular docking, and a mutation functional assay to identify amino acid residues (M39, V68, W106, Q107, and Y114) involved in the binding of AlepOBP6 to both sex pheromones and maize volatiles in A. lepigone. CONCLUSION: These results suggest that AlepOBP6 is likely involved in mediating the responses of A. lepigone to sex pheromones and maize volatiles, which may play a pivotal function in mating, feeding, and oviposition behaviors. This study not only provides new insight into the binding mechanism of OBPs to sex pheromones and host volatiles in moths, but also contributes to the discovery of novel target candidates for developing efficient behavior disruptors to control A. lepigone in the future. © 2021 Society of Chemical Industry.


Asunto(s)
Mariposas Nocturnas , Receptores Odorantes , Atractivos Sexuales , Animales , Femenino , Proteínas de Insectos/genética , Ligandos , Simulación del Acoplamiento Molecular , Feromonas , Receptores Odorantes/genética , Zea mays
19.
Front Physiol ; 13: 949607, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910558

RESUMEN

Insects have sensitive olfactory systems to interact with environment and respond to the change in host plant conditions. Key genes in the system can be potential targets for developing new and efficient pest behaviour control methods. Riptortus pedestris is an important soybean pest in East Asia and has caused serious damage to the soybean plants in Huang-Huai-Hai region of China. However, the current treatment of pests is dominated by chemical insecticides and lacks efficient sustainable prevention and control technologies. In this study, we identified 49 putative odorant-binding proteins (OBPs) (43 were new genes) and 25 chemosensory proteins (CSPs) (17 were new genes) in R. pedestris genome. These OBP and CSP genes are clustered in highly conserved groups from other hemipteran species in phylogenetic trees. Most RpedOBPs displayed antennal-biased expression. Among the 49 RpedOBPs, 33 were significantly highly expressed in the antennae, including three male-biased and nine female-biased. While many RpedCSPs were detected both in the antennae and in non-antennal tissues, only 11 RpedCSPs displayed antennal-biased expression, in which four RpedCSPs were male-biased and five RpedCSPs were female-biased. Some OBP and CSP genes showed sex-biased expression profiles. Our results not only provide a foundation for future exploration of the functions of RpedOBPs and RpedCSPs but also aid in developing environmentally friendly insecticides in the future.

20.
J Agric Food Chem ; 70(39): 12372-12382, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36129378

RESUMEN

Usually, the recognition of sex pheromone signals is restricted to adult moths. Here, our behavioral assay showed that fourth-instar Spodoptera litura larvae are attracted to cabbage laced with minor sex pheromones Z9,E12-tetradecadienyl acetate (Z9,E12-14:Ac) or Z9-tetradecenyl acetate (Z9-14:Ac). Seven odorant-binding proteins (OBPs) were upregulated after exposure to Z9,E12-14:Ac, and one OBP was upregulated after exposure to Z9-14:Ac. Fluorescence competitive binding assays showed that GOBP2 and OBP7 bound to sex pheromones. RNAi treatment significantly downregulated GOBP2 and OBP7 mRNA expression by 70.37 and 63.27%, respectively. The siOBP-treated larvae were not attracted to Z9,E12-14:Ac or Z9-14:Ac, and the corresponding preference indices were significantly lower than those in siGFP-treated larvae. Therefore, we concluded that GOBP2 and OBP7 are involved in the attraction of S. litura larvae to food containing Z9,E12-14:Ac and Z9-14:Ac. These results provide an important basis for exploring the olfactory mechanisms underlying sex pheromone attraction in moth larvae.


Asunto(s)
Mariposas Nocturnas , Atractivos Sexuales , Animales , Larva/genética , Larva/metabolismo , Mariposas Nocturnas/genética , Odorantes , Feromonas/metabolismo , ARN Mensajero/metabolismo , Atractivos Sexuales/metabolismo , Atractivos Sexuales/farmacología , Spodoptera/genética , Spodoptera/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA