Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancer Sci ; 114(3): 961-975, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36398713

RESUMEN

The Mondo family transcription factor MondoA plays a pivotal role in sensing metabolites, such as glucose, glutamine, and lactic acid, to regulate glucose metabolism and cell proliferation. Ketone bodies are important signals for reducing glucose uptake. However, it is unclear whether MondoA functions in ketone body-regulated glucose transport. Here we reported that ketone bodies promoted MondoA nuclear translocation and binding to the promoter of its target gene TXNIP. Ketone bodies reduced glucose uptake, increased apoptosis and decreased proliferation of colorectal cancer cells, which was impeded by MondoA knockdown. Moreover, we identified MEK1 as a novel component of the MondoA protein complex using a proteomic approach. Mechanistically, MEK1 interacted with MondoA and enhanced tyrosine 222, but not serine or threonine, phosphorylation of MondoA, inhibiting MondoA nuclear translocation and transcriptional activity. Ketone bodies decreased MEK1-dependent MondoA phosphorylation by blocking MondoA and MEK1 interaction, leading to MondoA nuclear translocation, TXNIP transcription, and inhibition of glucose uptake. Therefore, our study not only demonstrated that ketone bodies reduce glucose uptake, promote apoptosis, and inhibit cell proliferation in colorectal cancer cells by regulating MondoA phosphorylation but also identified MEK1-dependent phosphorylation as a new mechanism to manipulate MondoA activity.


Asunto(s)
Neoplasias Colorrectales , Cuerpos Cetónicos , Humanos , Fosforilación , Proteómica , Glucosa/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo
2.
Gastroenterology ; 161(2): 575-591.e16, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33901495

RESUMEN

BACKGROUND & AIMS: The metabolic features and function of intratumoral regulatory T cells (Tregs) are ambiguous in colorectal cancer. Tumor-infiltrating Tregs are reprogrammed to exhibit high glucose-depleting properties and adapt to the glucose-restricted microenvironment. The glucose-responsive transcription factor MondoA is highly expressed in Tregs. However, the role of MondoA in colorectal cancer-infiltrating Tregs in response to glucose limitation remains to be elucidated. METHODS: We performed studies using mice, in which MondoA was conditionally deleted in Tregs, and human colorectal cancer tissues. Seahorse and other metabolic assays were used to assess Treg metabolism. To study the role of Tregs in antitumor immunity, we used a subcutaneous MC38 colorectal cancer model and induced colitis-associated colorectal cancer in mice by azoxymethane and dextran sodium sulfate. RESULTS: Our analysis of single-cell RNA sequencing data of patients with colorectal cancer revealed that intratumoral Tregs featured low activity of the MondoA-thioredoxin-interacting protein (TXNIP) axis and increased glucose uptake. Although MondoA-deficient Tregs were less immune suppressive and selectively promoted T-helper (Th) cell type 1 (Th1) responses in a subcutaneous MC38 tumor model, Treg-specific MondoA knockout mice were more susceptible to azoxymethane-DSS-induced colorectal cancer. Mechanistically, suppression of the MondoA-TXNIP axis promoted glucose uptake and glycolysis, induced hyperglycolytic Th17-like Tregs, which facilitated Th17 inflammation, promoted interleukin 17A-induced of CD8+ T-cell exhaustion, and drove colorectal carcinogenesis. Blockade of interleukin 17A reduced tumor progression and minimized the susceptibility of MondoA-deficient mice to colorectal carcinogenesis. CONCLUSIONS: The MondoA-TXNIP axis is a critical metabolic regulator of Treg identity and function in the colorectal cancer microenvironment and a promising target for cancer therapy.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas Portadoras/metabolismo , Neoplasias Asociadas a Colitis/metabolismo , Neoplasias Colorrectales/metabolismo , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos T Reguladores/metabolismo , Tiorredoxinas/metabolismo , Microambiente Tumoral , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Proteínas Portadoras/genética , Línea Celular Tumoral , Neoplasias Asociadas a Colitis/genética , Neoplasias Asociadas a Colitis/inmunología , Neoplasias Asociadas a Colitis/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Glucólisis , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Transducción de Señal , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Células Th17/metabolismo , Tiorredoxinas/genética
3.
J Cell Mol Med ; 25(7): 3427-3436, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33656238

RESUMEN

Deregulated metabolism is one of the characteristics of hepatocellular carcinoma. Sex hormone receptor signalling has been involved in the marked gender dimorphism of hepatocellular carcinoma pathogenesis. Oestrogen receptor (ER) has been reported to reduce the incidence of liver cancer. However, it remains unclear how oestrogen and ER regulate metabolic alterations in liver tumour cells. Our previous work revealed that ERα interacted with carbohydrate responsive element binding protein (ChREBP), which is a transcription factor promoting aerobic glycolysis and proliferation of hepatoma cells. Here, the data showed that ERα overexpression with E2 treatment reduced aerobic glycolysis and cell proliferation of hepatoma cells. In addition to modestly down-regulating ChREBP transcription, ERα promoted ChREBP degradation. ERα co-immunoprecipitated with both ChREBP-α and ChREBP-ß, the two known subtypes of ChREBP. Although E2 promoted ERα to translocate to the nucleus, it did not change subcellular localization of ChREBP. In addition to interacting with ChREBP-ß and promoting its degradation, ERα decreased ChREBP-α-induced ChREBP-ß transcription. Taken together, we confirmed an original role of ERα in suppressing aerobic glycolysis in liver cancer cells and elucidated the mechanism by which ERα and ChREBP-α together regulated ChREBP-ß expression.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Carcinoma Hepatocelular/metabolismo , Proliferación Celular/efectos de los fármacos , Estradiol/metabolismo , Receptor alfa de Estrógeno/metabolismo , Glucólisis/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Regulación hacia Abajo , Receptor alfa de Estrógeno/genética , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo
4.
J Biol Chem ; 294(40): 14745-14756, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31409643

RESUMEN

The glucose-responsive transcription factor carbohydrate response element-binding protein (ChREBP) critically promotes aerobic glycolysis and cell proliferation in colorectal cancer cells. It has been reported that ubiquitination may be important in the regulation of ChREBP protein levels and activities. However, the ChREBP-specific E3 ligase and molecular mechanism of ChREBP ubiquitination remains unclear. Using database exploration and expression analysis, we found here that levels of the E3 ligase SMURF2 (Smad-ubiquitination regulatory factor 2) negatively correlate with those of ChREBP in cancer tissues and cell lines. We observed that SMURF2 interacts with ChREBP and promotes ChREBP ubiquitination and degradation via the proteasome pathway. Interestingly, ectopic SMURF2 expression not only decreased ChREBP levels but also reduced aerobic glycolysis, increased oxygen consumption, and decreased cell proliferation in colorectal cancer cells. Moreover, SMURF2 knockdown increased aerobic glycolysis, decreased oxygen consumption, and enhanced cell proliferation in these cells, mostly because of increased ChREBP accumulation. Furthermore, we identified Ser/Thr kinase AKT as an upstream suppressor of SMURF2 that protects ChREBP from ubiquitin-mediated degradation. Taken together, our results indicate that SMURF2 reduces aerobic glycolysis and cell proliferation by promoting ChREBP ubiquitination and degradation via the proteasome pathway in colorectal cancer cells. We conclude that the SMURF2-ChREBP interaction might represent a potential target for managing colorectal cancer.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Neoplasias Colorrectales/genética , Glucólisis/genética , Ubiquitina-Proteína Ligasas/genética , Aerobiosis/genética , Animales , Proliferación Celular/genética , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica/genética , Células HCT116 , Xenoinjertos , Humanos , Ratones , Proteolisis , Ubiquitinación/genética
5.
Mol Reprod Dev ; 81(4): 315-25, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24415168

RESUMEN

Oocyte meiotic maturation is a developmental transition that starts during germinal-vesicle breakdown and ends at the arrest in metaphase of meiosis II. This transition is associated with changes to both the proteins that are synthesized and the abundance/distribution of post-translational modifications that are crucial for subsequent fertilization and embryogenesis. Here, we isolated and cultured rat oocytes in vitro during both metaphase of meiosis I (MI) and meiosis II (MII) stages, respectively, and then compared their proteomic profiles by high-resolution, two-dimensional gel electrophoresis (2DE) followed by mass spectrometry. We found that the expression of five proteins was up-regulated while six proteins were down-regulated when comparing MI to MII oocytes. The expression of ERp57, an endoplasmic reticulum chaperone, underwent a dramatic increase between MI and MII oocytes, and became concentrated in a dome-shaped area of the cell surface within the microvillar region. A similar profile was observed during spermatogenesis, and sperm ERp57 eventually localized to the head and flagellum surfaces, finally ending in the equatorial region of acrosome-reacted sperm. Given the localization pattern, we tested and found that a polyclonal antiserum created against recombinant rat ERp57 significantly inhibited spermatozoa from penetrating zona pellucida-free oocytes without affecting either sperm motility or the acrosome reaction. These results indicate that ERp57 expression on oocytes, and possibly sperm, plays an important physiological role during sperm-egg fusion.


Asunto(s)
Meiosis , Oocitos/metabolismo , Proteína Disulfuro Isomerasas/fisiología , Interacciones Espermatozoide-Óvulo/fisiología , Acrosoma/química , Animales , Células Cultivadas , Electroforesis en Gel Bidimensional , Femenino , Fertilización In Vitro , Perfilación de la Expresión Génica , Sueros Inmunes , Masculino , Espectrometría de Masas , Fusión de Membrana , Microvellosidades/química , Oocitos/crecimiento & desarrollo , Proteína Disulfuro Isomerasas/antagonistas & inhibidores , Proteína Disulfuro Isomerasas/biosíntesis , Proteína Disulfuro Isomerasas/genética , Proteómica , Ratas , Proteínas Recombinantes/inmunología , Fracciones Subcelulares/química
6.
Cell Metab ; 36(5): 1013-1029.e5, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38547864

RESUMEN

Metabolic dysfunction-associated fatty liver disease (MAFLD) has a global prevalence of about 25% and no approved therapy. Using metabolomic and proteomic analyses, we identified high expression of hepatic transketolase (TKT), a metabolic enzyme of the pentose phosphate pathway, in human and mouse MAFLD. Hyperinsulinemia promoted TKT expression through the insulin receptor-CCAAT/enhancer-binding protein alpha axis. Utilizing liver-specific TKT overexpression and knockout mouse models, we demonstrated that TKT was sufficient and required for MAFLD progression. Further metabolic flux analysis revealed that Tkt deletion increased hepatic inosine levels to activate the protein kinase A-cAMP response element binding protein cascade, promote phosphatidylcholine synthesis, and improve mitochondrial function. Moreover, insulin induced hepatic TKT to limit inosine-dependent mitochondrial activity. Importantly, N-acetylgalactosamine (GalNAc)-siRNA conjugates targeting hepatic TKT showed promising therapeutic effects on mouse MAFLD. Our study uncovers how hyperinsulinemia regulates TKT-orchestrated inosine metabolism and mitochondrial function and provides a novel therapeutic strategy for MAFLD prevention and treatment.


Asunto(s)
Inosina , Mitocondrias , Transcetolasa , Animales , Femenino , Humanos , Masculino , Ratones , Hiperinsulinismo/metabolismo , Inosina/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Transcetolasa/metabolismo
7.
J Endocrinol ; 256(3)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36449405

RESUMEN

Transketolase (TKT), an enzyme in the non-oxidative branch of the pentose phosphate pathway (PPP), bi-directionally regulates the carbon flux between the PPP and glycolysis. Loss of TKT in adipose tissues decreased glycolysis and increased lipolysis and uncoupling protein-1 (UCP1) expression, protecting mice from high-fat diet-induced obesity. However, the role of TKT in brown adipose tissue (BAT)-dependent glucose homeostasis under normal chow diet remains to be elucidated. We found that TKT ablation increased levels of glucose transporter 4 (GLUT4), promoting glucose uptake and glycogen accumulation in BAT. Using the streptozotocin (STZ)-induced diabetic mouse model, we discovered that enhanced glucose uptake due to TKT deficiency in BAT contributed to decreasing blood glucose and weight loss, protecting mice from STZ-induced diabetes. Mechanistically, TKT deficiency decreased the level of thioredoxin-interacting protein, a known inhibitor for GLUT4, by decreasing NADPH and glutathione levels and inducing oxidative stress in BAT. Therefore, our data reveal a new role of TKT in regulating the anti-diabetic function of BAT as well as glucose homeostasis.


Asunto(s)
Tejido Adiposo Pardo , Diabetes Mellitus Experimental , Ratones , Animales , Tejido Adiposo Pardo/metabolismo , Transcetolasa/metabolismo , Glucólisis , Diabetes Mellitus Experimental/metabolismo , Glucosa/metabolismo
8.
Nat Metab ; 4(5): 559-574, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35606596

RESUMEN

Regulatory T (Treg) cells are critical for maintaining immune homeostasis and preventing autoimmunity. Here, we show that the non-oxidative pentose phosphate pathway (PPP) regulates Treg function to prevent autoimmunity. Deletion of transketolase (TKT), an indispensable enzyme of non-oxidative PPP, in Treg cells causes a fatal autoimmune disease in mice, with impaired Treg suppressive capability despite regular Treg numbers and normal Foxp3 expression levels. Mechanistically, reduced glycolysis and enhanced oxidative stress induced by TKT deficiency triggers excessive fatty acid and amino acid catabolism, resulting in uncontrolled oxidative phosphorylation and impaired mitochondrial fitness. Reduced α-KG levels as a result of reductive TCA cycle activity leads to DNA hypermethylation, thereby limiting functional gene expression and suppressive activity of TKT-deficient Treg cells. We also find that TKT levels are frequently downregulated in Treg cells of people with autoimmune disorders. Our study identifies the non-oxidative PPP as an integrator of metabolic and epigenetic processes that control Treg function.


Asunto(s)
Autoinmunidad , Vía de Pentosa Fosfato , Linfocitos T Reguladores , Transcetolasa , Animales , Autoinmunidad/genética , Autoinmunidad/inmunología , Epigénesis Genética/genética , Epigénesis Genética/inmunología , Glucólisis , Humanos , Ratones , Vía de Pentosa Fosfato/genética , Vía de Pentosa Fosfato/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Transcetolasa/genética , Transcetolasa/inmunología
9.
Front Endocrinol (Lausanne) ; 12: 653972, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33868181

RESUMEN

In the past several decades obesity has become one of the greatest health burdens worldwide. Diet high in fats and fructose is one of the main causes for the prevalence of metabolic disorders including obesity. Promoting brown or beige adipocyte development and activity is regarded as a potential treatment of obesity. Mondo family transcription factors including MondoA and carbohydrate response element binding protein (ChREBP) are critical for nutrient-sensing in multiple metabolic organs including the skeletal muscle, liver, adipose tissue and pancreas. Under normal nutrient conditions, MondoA and ChREBP contribute to maintaining metabolic homeostasis. When nutrient is overloaded, Mondo family transcription factors directly regulate glucose and lipid metabolism in brown and beige adipocytes or modulate the crosstalk between metabolic organs. In this review, we aim to provide an overview of recent advances in the understanding of MondoA and ChREBP in sensing nutrients and regulating obesity or related pathological conditions.


Asunto(s)
Adipocitos Beige/metabolismo , Adipocitos Marrones/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción/metabolismo , Adipocitos/citología , Adipogénesis , Tejido Adiposo/metabolismo , Animales , Metabolismo Energético , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Metabolismo de los Lípidos , Ratones , Obesidad/fisiopatología , Obesidad/terapia , Fenotipo
10.
Cell Death Dis ; 12(10): 853, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34535624

RESUMEN

Inflammatory bowel disease (IBD) has a close association with transketolase (TKT) that links glycolysis and the pentose phosphate pathway (PPP). However, how TKT functions in the intestinal epithelium remains to be elucidated. To address this question, we specifically delete TKT in intestinal epithelial cells (IECs). IEC TKT-deficient mice are growth retarded and suffer from spontaneous colitis. TKT ablation brings about striking alterations of the intestine, including extensive mucosal erosion, aberrant tight junctions, impaired barrier function, and increased inflammatory cell infiltration. Mechanistically, TKT deficiency significantly accumulates PPP metabolites and decreases glycolytic metabolites, thereby reducing ATP production, which results in excessive apoptosis and defective intestinal barrier. Therefore, our data demonstrate that TKT serves as an essential guardian of intestinal integrity and barrier function as well as a potential therapeutic target for intestinal disorders.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Apoptosis , Colitis/patología , Intestinos/metabolismo , Intestinos/patología , Transcetolasa/metabolismo , Animales , Apoptosis/genética , Proliferación Celular/genética , Colitis/genética , Colon/patología , Metabolismo Energético , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Eliminación de Gen , Ontología de Genes , Mucosa Intestinal/patología , Antígeno Ki-67/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , NADP/metabolismo , Rectocele/patología , Transcetolasa/deficiencia , Regulación hacia Arriba/genética
11.
Reprod Biol Endocrinol ; 8: 10, 2010 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-20132541

RESUMEN

BACKGROUND: Sperm-oocyte fusion is a critical step in fertilization, which requires a series of proteins from both spermatozoa and oocyte to mediate membrane adhesion and subsequent fusion. A rat spermatozoa membrane protein is endoplasmic reticulum protein 29 (ERp29), which significantly increases on the sperm surface as well as in the cytoplasm of epididymal epithelia from caput to cauda as the sperm undergo epididymal maturation. Moreover, ERp29 facilitates viral infection via mediating membrane penetration. We determined if in addition to promoting sperm maturation ERp29 may also play a role in facilitating gamete fusion during the fertilization process. METHODS: Laser scanning confocal microscopy (LSCM) and Western blot analysis were employed to probe for ERp29 protein in BALB/c mouse epididymal and acrosome-reacted spermatozoa. We prepared rabbit polyclonal antibodies against mouse recombinant ERp29 (rERp29) to characterize: 1) fertilization rate (FR); 2) fertilization index (FI); 3) sperm motility and 4) acrosome reaction (AR). RESULTS: Confocal microscopy indicated that ERp29 was partially localized at the sperm head of the epididymal caput as well as over the whole head and part of the principal piece of the tail region from the epididymal cauda. However, when the acrosome reacted, ERp29 remained in the equatorial and post-acrosomal regions of the sperm head, which is the initial site of sperm-oocyte membrane fusion. Such localization changes were confirmed based on the results of Western blot analysis. Furthermore, the antibodies against mouse rERp29 inhibited the spermatozoa from penetrating into the zona pellucida (ZP)-free oocytes. The functional blocking antibodies reduced both mouse sperm-oocyte FR and FI at concentrations of 100 and 200 micro g/ml compared with pre-immunized rabbit IgG or with anti-mouse recombinant bactericidal/permeability-increasing protein (BPI, a sperm surface protein unrelated to sperm-oocyte fusion) antibodies (100 micro g/ml), but they had no effect on sperm motility and AR. CONCLUSION: This study demonstrates that ERp29 on mouse spermatozoa membrane changes during epididymal transit and AR. Accordingly, in mice this protein may be one of the important factors involved in sperm fertilization by facilitating sperm-oocyte membrane fusion.


Asunto(s)
Proteínas de Choque Térmico/fisiología , Interacciones Espermatozoide-Óvulo/fisiología , Animales , Anticuerpos/farmacología , Fusión Celular , Femenino , Proteínas de Choque Térmico/inmunología , Proteínas de Choque Térmico/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Embarazo , Conejos , Ratas , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Maduración del Esperma/efectos de los fármacos , Maduración del Esperma/fisiología , Motilidad Espermática/efectos de los fármacos , Interacciones Espermatozoide-Óvulo/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo
12.
Diabetes ; 69(7): 1355-1367, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32295803

RESUMEN

Obesity has recently become a prevalent health threat worldwide. Although emerging evidence has suggested a strong link between the pentose phosphate pathway (PPP) and obesity, the role of transketolase (TKT), an enzyme in the nonoxidative branch of the PPP that connects PPP and glycolysis, remains obscure in adipose tissues. In this study, we specifically deleted TKT in mouse adipocytes and found no obvious phenotype upon normal diet feeding. However, adipocyte TKT abrogation attenuated high-fat diet-induced obesity, reduced hepatic steatosis, improved glucose tolerance, alleviated insulin resistance, and increased energy expenditure. Mechanistically, TKT deficiency accumulated nonoxidative PPP metabolites and decreased glycolysis and pyruvate input into the mitochondria, leading to increased lipolytic enzyme gene expression and enhanced lipolysis, fatty acid oxidation, and mitochondrial respiration. Therefore, our data not only identify a novel role of TKT in regulating lipolysis and obesity but also suggest that limiting glucose-derived carbon into the mitochondria induces lipid catabolism and energy expenditure.


Asunto(s)
Tejido Adiposo/metabolismo , Lipólisis , Obesidad/prevención & control , Transcetolasa/fisiología , Animales , Dieta Alta en Grasa , Metabolismo Energético , Hígado Graso/prevención & control , Resistencia a la Insulina , Ratones , Transcetolasa/deficiencia
13.
Cancer Res ; 79(14): 3689-3701, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31101762

RESUMEN

De novo nucleotide biosynthesis is essential for maintaining cellular nucleotide pools, the suppression of which leads to genome instability. The metabolic enzyme transketolase (TKT) in the nonoxidative branch of the pentose phosphate pathway (PPP) regulates ribose 5-phosphate (R5P) levels and de novo nucleotide biosynthesis. TKT is required for maintaining cell proliferation in human liver cancer cell lines, yet the role of TKT in liver injury and cancer initiation remains to be elucidated. In this study, we generated a liver-specific TKT knockout mouse strain by crossing TKTflox/flox mice with albumin-Cre mice. Loss of TKT in hepatocytes protected the liver from diethylnitrosamine (DEN)-induced DNA damage without altering DEN metabolism. DEN treatment of TKT-null liver increased levels of R5P and promoted de novo nucleotide synthesis. More importantly, supplementation of dNTPs in primary hepatocytes alleviated DEN-induced DNA damage, cell death, inflammatory response, and cell proliferation. Furthermore, DEN and high-fat diet (HFD)-induced liver carcinogenesis was reduced in TKTflox/floxAlb-Cre mice compared with control littermates. Mechanistically, loss of TKT in the liver increased apoptosis, reduced cell proliferation, decreased TNFα, IL6, and STAT3 levels, and alleviated DEN/HFD-induced hepatic steatosis and fibrosis. Together, our data identify a key role for TKT in promoting genome instability during liver injury and tumor initiation. SIGNIFICANCE: These findings identify transketolase as a novel metabolic target to maintain genome stability and reduce liver carcinogenesis.


Asunto(s)
Daño del ADN , Neoplasias Hepáticas Experimentales/enzimología , Hígado/efectos de los fármacos , Hígado/enzimología , Nucleótidos/metabolismo , Ribosamonofosfatos/metabolismo , Transcetolasa/deficiencia , Animales , Dietilnitrosamina , Glucólisis , Hígado/metabolismo , Neoplasias Hepáticas Experimentales/inducido químicamente , Neoplasias Hepáticas Experimentales/genética , Neoplasias Hepáticas Experimentales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Vía de Pentosa Fosfato
14.
J Exp Clin Cancer Res ; 37(1): 54, 2018 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-29530061

RESUMEN

BACKGROUND: Diabetic patients have a higher risk factor for colorectal cancer (CRC) metastasis. Stearoyl-CoA desaturase 1 (SCD1), the main enzyme responsible for producing monounsaturated fatty acids(MUFA) from saturated fatty acids, is frequently deregulated in both diabetes and CRC. The function and mechanism of SCD1 in metastasis of CRC and its relevance to glucose remains largely unknown. METHODS: SCD1 expression levels were analyzed in human CRC tissues and the Cancer Browser database ( https://genome-cancer.ucsc.edu/ ). CRC cell lines stably transfected with SCD1 shRNAs or vector were established to investigate the role of SCD1 in modulating migration and invasion of CRC cells. A glucose concentration gradient was set to investigate regulation of SCD1 in CRC relevant to diabetic conditions. RESULTS: The clinical data analysis showed high expression of SCD1 in CRC tissues with a negative correlation with the prognosis of CRC. In vitro experiments revealed that SCD1 increased CRC progression through promoting epithelial-mesenchymal transition (EMT). Lipidomic analysis demonstrated that SCD1 increased MUFA levels and MUFA administration could rescue migration and invasion defect of CRC cells induced by SCD1 knockdown. Furthermore, SCD1-mediated progression of CRC was promoted by carbohydrate response-element binding protein (ChREBP) in response to high glucose. Mechanistically, hyperglycemia-SCD1-MUFA induced CRC cell migration and invasion by regulating PTEN. CONCLUSIONS: Our findings show that SCD1 promotes metastasis of CRC cells through MUFA production and suppressing PTEN in response to glucose, which may be a novel mechanism for diabetes-induced CRC metastasis.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Regulación Neoplásica de la Expresión Génica , Glucosa/metabolismo , Fosfohidrolasa PTEN/genética , Estearoil-CoA Desaturasa/genética , Adulto , Anciano , Animales , Biomarcadores de Tumor , Línea Celular , Movimiento Celular , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal , Ácidos Grasos Monoinsaturados/metabolismo , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Modelos Biológicos , Metástasis de la Neoplasia , Estadificación de Neoplasias , Fosfohidrolasa PTEN/metabolismo , Pronóstico , Transducción de Señal , Estearoil-CoA Desaturasa/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Medicine (Baltimore) ; 96(33): e7456, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28816938

RESUMEN

The aim of the study was to elucidate the mechanism by which advanced glycation end products (AGEs) promote cell proliferation in liver cancer cells.We treated liver cancer HepG2 cells with 200 mg/L AGEs or bovine serum albumin (BSA) and assayed for cell viability, cell cycle, and apoptosis. We performed real-time PCR and Western blot analysis for RNA and protein levels of carbohydrate responsive element-binding protein (ChREBP) in AGEs- or BSA-treated HepG2 cells. We analyzed the level of reactive oxygen species (ROS) in HepG2 cells treated with AGEs or BSA.We found that increased S-phase cell percentage and decreased apoptosis contributed to AGEs-induced liver cancer cell proliferation. Real-time PCR and Western blot analysis showed that AGEs stimulated RNA and protein levels of ChREBP, a transcription factor promoting glycolysis and maintaining cell proliferation in liver cancer cells. Intriguingly, the level of ROS was higher in AGEs-treated liver cancer cells. Treating liver cancer cells with antioxidant N-acetyl cystein (NAC) partly blocked AGEs-induced ChREBP expression and cell proliferation.Our results suggest that the AGEs-ROS-ChREBP pathway plays a critical role in promoting ChREBP expression and liver cancer cell proliferation.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/biosíntesis , Carcinoma Hepatocelular/metabolismo , Productos Finales de Glicación Avanzada/farmacocinética , Neoplasias Hepáticas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Acetilcisteína/farmacología , Apoptosis , Proliferación Celular , Supervivencia Celular , Humanos , ARN Mensajero/biosíntesis , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/metabolismo , Células Tumorales Cultivadas
16.
Oncotarget ; 7(19): 27142-57, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27049827

RESUMEN

Metabolic alterations underlying clear cell renal cell carcinoma (ccRCC) progression include aerobic glycolysis, increased pentose phosphate pathway activity and reduced oxidative phosphorylation. Phosphofructokinase (PFK), a key enzyme of the glycolytic pathway, has L, M, and P isoforms with different tissue distributions. The mRNA level of the platelet isoform of phosphofructokinase (PFKP) is reported to be up-regulated in ccRCC patients. However, it remains unclear whether PFKP plays an important role in promoting aerobic glycolysis and macromolecular biosynthesis to support cell proliferation in ccRCC. Here we found that the up-regulated PFKP became the predominant isoform of PFK in human ccRCC. Suppression of PFKP not only impaired cell proliferation by inducing cell cycle arrest and apoptosis, but also led to decreased glycolysis, pentose phosphate pathway and nucleotide biosynthesis, accompanied by activated tricarboxylic acid cycle in ccRCC cells. Moreover, we found that p53 activation contributed to cell proliferation and metabolic defects induced by PFKP knockdown in ccRCC cells. Furthermore, suppression of PFKP led to reduced ccRCC tumor growth in vivo. Our data indicate that PFKP not only is required for metabolic reprogramming and maintaining cell proliferation, but also may provide us with a valid target for anti-renal cancer pharmaceutical agents.


Asunto(s)
Carcinoma de Células Renales/genética , Proliferación Celular/genética , Neoplasias Renales/genética , Fosfofructoquinasas/genética , Anciano , Animales , Apoptosis/genética , Plaquetas/enzimología , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Glucólisis/genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Masculino , Ratones Desnudos , Persona de Mediana Edad , Vía de Pentosa Fosfato/genética , Fosfofructoquinasas/metabolismo , Interferencia de ARN , Trasplante Heterólogo , Adulto Joven
17.
Sci Rep ; 6: 23944, 2016 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-27029511

RESUMEN

Transcription factor carbohydrate responsive element binding protein (ChREBP) promotes glycolysis and lipogenesis in metabolic tissues and cancer cells. ChREBP-α and ChREBP-ß, two isoforms of ChREBP transcribed from different promoters, are both transcriptionally induced by glucose. However, the mechanism by which glucose increases ChREBP mRNA levels remains unclear. Here we report that hepatocyte nuclear factor 4 alpha (HNF-4α) is a key transcription factor for glucose-induced ChREBP-α and ChREBP-ß expression. Ectopic HNF-4α expression increased ChREBP transcription while knockdown of HNF-4α greatly reduced ChREBP mRNA levels in liver cancer cells and mouse primary hepatocytes. HNF-4α not only directly bound to an E-box-containing region in intron 12 of the ChREBP gene, but also promoted ChREBP-ß transcription by directly binding to two DR1 sites and one E-box-containing site of the ChREBP-ß promoter. Moreover, HNF-4α interacted with ChREBP-α and synergistically promoted ChREBP-ß transcription. Functionally, HNF-4α suppression reduced glucose-dependent ChREBP induction. Increased nuclear abundance of HNF-4α and its binding to cis-elements of ChREBP gene in response to glucose contributed to glucose-responsive ChREBP transcription. Taken together, our results not only revealed the novel mechanism by which HNF-4α promoted ChREBP transcription in response to glucose, but also demonstrated that ChREBP-α and HNF-4α synergistically increased ChREBP-ß transcription.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Glucosa/farmacología , Factor Nuclear 4 del Hepatocito/genética , Hepatocitos/efectos de los fármacos , Hígado/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Genes Reporteros , Glucosa/metabolismo , Células HEK293 , Células Hep G2 , Factor Nuclear 4 del Hepatocito/metabolismo , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Hígado/citología , Hígado/metabolismo , Luciferasas/genética , Luciferasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Motivos de Nucleótidos , Cultivo Primario de Células , Regiones Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal
18.
Mol Cell Endocrinol ; 395(1-2): 69-78, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25111846

RESUMEN

Diabetic patients have increased levels of advanced glycation end products (AGEs) and the role of AGEs in regulating cancer cell proliferation is unclear. Here, we found that treating colorectal and liver cancer cells with AGEs promoted cell proliferation. AGEs stimulated both the expression and activation of a key transcription factor called carbohydrate responsive element binding protein (ChREBP) which had been shown to promote glycolytic and anabolic activity as well as proliferation of colorectal and liver cancer cells. Using siRNAs or the antagonistic antibody for the receptor for advanced glycation end-products (RAGE) blocked AGEs-induced ChREBP expression or cell proliferation in cancer cells. Suppressing ChREBP expression severely impaired AGEs-induced cancer cell proliferation. Taken together, these results demonstrate that AGEs-RAGE signaling enhances cancer cell proliferation in which AGEs-mediated ChREBP induction plays an important role. These findings may provide new explanation for increased cancer progression in diabetic patients.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/biosíntesis , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Productos Finales de Glicación Avanzada/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Células Hep G2 , Humanos , Neoplasias/patología , Receptor para Productos Finales de Glicación Avanzada/metabolismo
19.
Int J Biochem Cell Biol ; 45(11): 2688-97, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24055811

RESUMEN

The glucose-responsive transcription factor carbohydrate responsive element binding protein (ChREBP) plays an important role in regulating glucose metabolism in support of anabolic synthesis in both hepatocytes and cancer cells. In order to further investigate the molecular mechanism by which ChREBP regulates transcription, we used a proteomic approach to identify proteins interacting with ChREBP. We found several potential ChREBP-interacting partners, one of which, flightless I homolog (FLII) was verified to interact and co-localize with ChREBP in HCT116 colorectal cancer and HepG2 hepatocellular carcinoma cells. FLII is a member of the gelsolin superfamily of actin-remodeling proteins and can function as a transcriptional co-regulator. The C-terminal 227 amino acid region of ChREBP containing the DNA-binding domain interacted with FLII. Both the N-terminal leucine-rich repeat (LRR) domain and C-terminal gelsolin homolog domain (GLD) of FLII interacted and co-localized with ChREBP. ChREBP and FLII localized in both the cytoplasm and nucleus of cancer cells. Glucose increased expression and nuclear localization of ChREBP, and had minimal effect on the level and distribution of FLII. FLII knockdown using siRNAs increased mRNA and protein levels of ChREBP-activated genes and decreased transcription of ChREBP-repressed genes in cancer cells. Conversely, FLII overexpression negatively regulated ChREBP-mediated transcription in cancer cells. Our findings suggest that FLII is a component of the ChREBP transcriptional complex and negatively regulates ChREBP function in cancer cells.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Neoplasias/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Homología de Secuencia de Aminoácido , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proteínas Co-Represoras/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Glucosa/farmacología , Células HCT116 , Células HeLa , Células Hep G2 , Humanos , Neoplasias/patología , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Transporte de Proteínas/efectos de los fármacos , Proteína Proto-Oncogénica c-fli-1/química , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Transcripción Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA