Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Appl Environ Microbiol ; 90(1): e0164923, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38108644

RESUMEN

5-Hydroxymethfurural (5-HMF) is naturally found in a variety of foods and beverages and represents a main inhibitor in the lignocellulosic hydrolysates used for fermentation. This study investigated the impact of 5-HMF on the genomic stability and phenotypic plasticity of the yeast Saccharomyces cerevisiae. Using next-generation sequencing technology, we examined the genomic alterations of diploid S. cerevisiae isolates that were subcultured on a medium containing 1.2 g/L 5-HMF. We found that in 5-HMF-treated cells, the rates of chromosome aneuploidy, large deletions/duplications, and loss of heterozygosity were elevated compared with that in untreated cells. 5-HMF exposure had a mild impact on the rate of point mutations but altered the mutation spectrum. Contrary to what was observed in untreated cells, more monosomy than trisomy occurred in 5-HMF-treated cells. The aneuploidy mutant with monosomic chromosome IX was more resistant to 5-HMF than the diploid parent strain because of the enhanced activity of alcohol dehydrogenase. Finally, we found that overexpression of ADH6 and ZWF1 effectively stabilized the yeast genome under 5-HMF stress. Our findings not only elucidated the global effect of 5-HMF on the genomic integrity of yeast but also provided novel insights into how chromosomal instability drives the environmental adaptability of eukaryotic cells.IMPORTANCESingle-cell microorganisms are exposed to a range of stressors in both natural and industrial settings. This study investigated the effects of 5-hydroxymethfurural (5-HMF), a major inhibitor found in baked foods and lignocellulosic hydrolysates, on the chromosomal instability of yeast. We examined the mechanisms leading to the distinct patterns of 5-HMF-induced genomic alterations and discovered that chromosomal loss, typically viewed as detrimental to cell growth under most conditions, can contribute to yeast tolerance to 5-HMF. Our results increased the understanding of how specific stressors stimulate genomic plasticity and environmental adaptation in yeast.


Asunto(s)
Inestabilidad Genómica , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Adaptación Fisiológica , Aneuploidia , Inestabilidad Cromosómica
2.
Appl Environ Microbiol ; 88(2): e0170321, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34731050

RESUMEN

Bleomycin (BLM) is a widely used chemotherapeutic drug. BLM-treated cells showed an elevated rate of mutations, but the underlying mechanisms remained unclear. In this study, the global genomic alterations in BLM-treated cells were explored in the yeast Saccharomyces cerevisiae. Using genetic assay and whole-genome sequencing, we found that the mutation rate could be greatly elevated in S. cerevisiae cells that underwent Zeocin (a BLM member) treatment. One-base deletion and T-to-G substitution at the 5'-GT-3' motif represented the most striking signature of Zeocin-induced mutations. This was mainly the result of translesion DNA synthesis involving Rev1 and polymerase ζ. Zeocin treatment led to the frequent loss of heterozygosity and chromosomal rearrangements in the diploid strains. The breakpoints of recombination events were significantly associated with certain chromosomal elements. Lastly, we identified multiple genomic alterations that contributed to BLM resistance in the Zeocin-treated mutants. Overall, this study provides new insights into the genotoxicity and evolutional effects of BLM. IMPORTANCE Bleomycin is an antitumor antibiotic that can mutate genomic DNA. Using yeast models in combination with genome sequencing, the mutational signatures of Zeocin (a member of the bleomycin family) are disclosed. Translesion-synthesis polymerases are crucial for the viability of Zeocin-treated yeast cells at the sacrifice of a higher mutation rate. We also confirmed that multiple genomic alterations were associated with the improved resistance to Zeocin, providing novel insights into how bleomycin resistance is developed in cells.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Bleomicina/farmacología , División Celular , Genómica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466757

RESUMEN

Chromosomal rearrangements comprise unbalanced structural variations resulting in gain or loss of DNA copy numbers, as well as balanced events including translocation and inversion that are copy number neutral, both of which contribute to phenotypic evolution in organisms. The exquisite genetic assay and gene editing tools available for the model organism Saccharomyces cerevisiae facilitate deep exploration of the mechanisms underlying chromosomal rearrangements. We discuss here the pathways and influential factors of chromosomal rearrangements in S. cerevisiae. Several methods have been developed to generate on-demand chromosomal rearrangements and map the breakpoints of rearrangement events. Finally, we highlight the contributions of chromosomal rearrangements to drive phenotypic evolution in various S. cerevisiae strains. Given the evolutionary conservation of DNA replication and recombination in organisms, the knowledge gathered in the small genome of yeast can be extended to the genomes of higher eukaryotes.


Asunto(s)
Inversión Cromosómica/genética , Cromosomas Fúngicos/genética , Reordenamiento Génico/genética , Saccharomyces cerevisiae/genética , Translocación Genética/genética , Antibióticos Antineoplásicos , Bleomicina/farmacología , Roturas del ADN de Doble Cadena/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de la radiación , Reordenamiento Génico/efectos de los fármacos , Reordenamiento Génico/efectos de la radiación , Modelos Genéticos , Radiación Ionizante
4.
J Geriatr Cardiol ; 21(5): 523-533, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38948897

RESUMEN

OBJECTIVES: To evaluate the predictive value of fasting plasma glucose (FPG) for in-hospital mortality in patients with acute myocardial infarction (AMI) with different glucose metabolism status. METHODS: We selected 5,308 participants with AMI from the prospective, nationwide, multicenter CAMI registry, of which 2,081 were diabetic and 3,227 were nondiabetic. Patients were divided into high FPG and low FPG groups according to the optimal cutoff values of FPG to predict in-hospital mortality for diabetic and nondiabetic cohorts, respectively. The primary endpoint was in-hospital mortality. RESULTS: Overall, 94 diabetic patients (4.5%) and 131 nondiabetic patients (4.1%) died during hospitalization, and the optimal FPG thresholds for predicting in-hospital death of the two cohorts were 13.2 mmol/L and 6.4 mmol/L, respectively. Compared with individuals who had low FPG, those with high FPG were significantly associated with higher in-hospital mortality in diabetic cohort (10.1% vs. 2.8%; odds ratio [OR] = 3.862, 95% confidence interval [CI]: 2.542-5.869) and nondiabetic cohort (7.4% vs. 1.7%; HR = 4.542, 95%CI: 3.041-6.782). After adjusting the potential confounders, this significant association was not changed. Furthermore, FPG as a continuous variable was positively associated with in-hospital mortality in single-variable and multivariable models regardless of diabetic status. Adding FPG to the original model showed a significant improvement in C-statistic and net reclassification in diabetic and nondiabetic cohorts. CONCLUSIONS: This large-scale registry indicated that there is a strong positive association between FPG and in-hospital mortality in AMI patients with and without diabetes. FPG might be useful to stratify patients with AMI.

5.
Microbiol Spectr ; 11(4): e0121623, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37395645

RESUMEN

Furfural is a major inhibitor found in lignocellulosic hydrolysate, a promising feedstock for the biofermentation industry. In this study, we aimed to investigate the potential impact of this furan-derived chemical on yeast genome integrity and phenotypic evolution by using genetic screening systems and high-throughput analyses. Our results showed that the rates of aneuploidy, chromosomal rearrangements (including large deletions and duplications), and loss of heterozygosity (LOH) increased by 50-fold, 23-fold, and 4-fold, respectively, when yeast cells were cultured in medium containing a nonlethal dose of furfural (0.6 g/L). We observed significantly different ratios of genetic events between untreated and furfural-exposed cells, indicating that furfural exposure induced a unique pattern of genomic instability. Furfural exposure also increased the proportion of CG-to-TA and CG-to-AT base substitutions among point mutations, which was correlated with DNA oxidative damage. Interestingly, although monosomy of chromosomes often results in the slower growth of yeast under spontaneous conditions, we found that monosomic chromosome IX contributed to the enhanced furfural tolerance. Additionally, terminal LOH events on the right arm of chromosome IV, which led to homozygosity of the SSD1 allele, were associated with furfural resistance. This study sheds light on the mechanisms underlying the influence of furfural on yeast genome integrity and adaptability evolution. IMPORTANCE Industrial microorganisms are often exposed to multiple environmental stressors and inhibitors during their application. This study demonstrates that nonlethal concentrations of furfural in the culture medium can significantly induce genome instability in the yeast Saccharomyces cerevisiae. Notably, furfural-exposed yeast cells displayed frequent chromosome aberrations, indicating the potent teratogenicity of this inhibitor. We identified specific genomic alterations, including monosomic chromosome IX and loss of heterozygosity of the right arm of chromosome IV, that confer furfural tolerance to a diploid S. cerevisiae strain. These findings enhance our understanding of how microorganisms evolve and adapt to stressful environments and offer insights for developing strategies to improve their performance in industrial applications.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Furaldehído/toxicidad , Proteínas de Saccharomyces cerevisiae/genética , Inestabilidad Genómica , Genómica
6.
J Travel Med ; 27(8)2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33283238

RESUMEN

BACKGROUND: The frequent movement of population between countries brings an increasing number of travel-related infections. This study aims to define the spectrum and dynamics of imported infections observed from international travel in the Chinese mainland. METHODS: Sick travellers were screened by inbound sentinel surveillance and post-travel clinic visits from 2014 to 18. The infections were classified as respiratory, gastrointestinal, vector-borne, blood/sexually transmitted and mucocutaneous. The analysed variables included the place of origin of the travellers (Chinese or foreign) and the time when travel-related infection was present (at the time of return, during travel and post-travel visits to the clinic). RESULTS: In total, 58 677 cases were identified amongst 1 409 265 253 travellers, with an incidence of 41.64/million, comprising during-travel incidence of 27.44/million and a post-travel incidence of 14.20/million. Respiratory infections constituted the highest proportion of illnesses during travel (81.19%, 31 393 of 38 667), which mainly came from Asian countries and tourists; with influenza virus and rhinovirus infections being mainly diagnosed. Vector-borne diseases constituted the highest proportion of post-travel illnesses (98.14%, 19 638 of 20 010), which were mainly diagnosed from African countries and labourers; with malaria and dengue fever being mainly diagnosed. The differential infection spectrum varied in terms of the traveller's demography, travel destination and travel purpose. As such, a higher proportion of foreign travellers had blood/sexually transmitted diseases (89.85%, 2832 of 3152), while Chinese citizens had a higher prevalence of vector-borne diseases (85.98%, 19 247 of 22 387) and gastrointestinal diseases (79.36%, 1115 of 1405). The highest incidence rate was observed amongst travellers arriving from Africa, while the lowest was observed amongst travellers arriving from Europe. CONCLUSIONS: The findings might help in preparing recommendations for travellers and also aid in primary care or other clinics that prepare travellers before trips abroad. The findings will also help to identify locations and the associated types of infections that might require attention.


Asunto(s)
Enfermedades Transmisibles Importadas , Prevención Primaria , Enfermedad Relacionada con los Viajes , Viaje , Enfermedades Transmitidas por Vectores , Virosis , Adulto , China/epidemiología , Enfermedades Transmisibles Importadas/clasificación , Enfermedades Transmisibles Importadas/diagnóstico , Enfermedades Transmisibles Importadas/epidemiología , Enfermedades Transmisibles Importadas/prevención & control , Femenino , Humanos , Incidencia , Masculino , Evaluación de Necesidades , Prevención Primaria/métodos , Prevención Primaria/organización & administración , Viaje/clasificación , Viaje/estadística & datos numéricos , Enfermedades Transmitidas por Vectores/diagnóstico , Enfermedades Transmitidas por Vectores/epidemiología , Enfermedades Transmitidas por Vectores/prevención & control , Virosis/diagnóstico , Virosis/epidemiología , Virosis/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA