Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Cell ; 33(8): 2538-2561, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34467412

RESUMEN

A 1D/2D genome-wide association study strategy was adopted to investigate the genetic systems underlying the reciprocal adaptation of rice (Oryza sativa) and its bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo) using the whole-genome sequencing and large-scale phenotyping data of 701 rice accessions and 23 diverse Xoo strains. Forty-seven Xoo virulence-related genes and 318 rice quantitative resistance genes (QR-genes) mainly located in 41 genomic regions, and genome-wide interactions between the detected virulence-related genes and QR genes were identified, including well-known resistance genes/virulence genes plus many previously uncharacterized ones. The relationship between rice and Xoo was characterized by strong differentiation among Xoo races corresponding to the subspecific differentiation of rice, by strong shifts toward increased resistance/virulence of rice/Xoo populations and by rich genetic diversity at the detected rice QR-genes and Xoo virulence genes, and by genome-wide interactions between many rice QR-genes and Xoo virulence genes in a multiple-to-multiple manner, presumably resulting either from direct protein-protein interactions or from genetic epistasis. The observed complex genetic interaction system between rice and Xoo likely exists in other crop-pathogen systems that would maintain high levels of diversity at their QR-loci/virulence-loci, resulting in dynamic coevolutionary consequences during their reciprocal adaptation.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Oryza/genética , Oryza/microbiología , Xanthomonas/genética , Adaptación Fisiológica/genética , Resistencia a la Enfermedad/genética , Regulación Bacteriana de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma Bacteriano , Genoma de Planta , Estudio de Asociación del Genoma Completo , Desequilibrio de Ligamiento , Filogenia , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Virulencia/genética , Secuenciación Completa del Genoma , Xanthomonas/patogenicidad
2.
BMC Genomics ; 16: 111, 2015 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-25765449

RESUMEN

BACKGROUND: Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is a devastating rice disease worldwide. Xa39 is a resistance (R) gene with a broad-spectrum hypersensitive response (BSHR) to Xoo. Nevertheless, the molecular mechanisms of resistance mediated by Xa39 remain unclear. In this study, the transcriptome profiling of a rice line carrying Xa39 and its parents at the early stage of Xoo infection were investigated. RESULTS: A rice introgression line H471 carrying Xa39 exhibited a typical local hypersensitive response phenotype, accompanied by programmed cell death after inoculation with the Xoo Philippines' race 9b. Transcriptome profiling of H471 and its parents at 1 and 2 days post-inoculation was performed using RNA sequencing. In total, 306 differentially expressed genes (DEGs) were identified in H471 compared with its recurrent parent Huang-Hua-Zhan after inoculation with Xoo. Among them, 121 (39.5%) genes, with functional enrichments that were related to defense response, protein amino acid phosphorylation, and apoptosis, were found to be constitutively expressed. The other 185 (60.5%) genes, with GO terms that belonged to defense response, were significantly responsive to Xoo infection in H471. Ten up-regulated and 12 down-regulated genes encoding intracellular immune receptors were identified in H471 compared with Huang-Hua-Zhan. LOC_Os11g37759, which was located in the fine-mapping region harboring Xa39, is a Xa39 candidate gene. The putative BSHR-related co-regulatory networks were constructed using 33 DEGs from four functional groups, including gibberellic acid receptors and brassinosteroid regulators, which were differentially co-expressed with LOC_Os11g37759 in infected H471. Our results indicated that there might be cross-talk between the Xa39-mediated signal transduction cascades and the GA/BR signaling pathway, and that the defense mechanism was related to diverse kinases, transcription factors, post-translational regulation, and R genes. CONCLUSIONS: The present study provides the comprehensive transcriptome profile of a rice introgression line carrying Xa39 and its parents, and identifies a set of DEGs involved in BSHR mediated by Xa39. These data provide novel insights into the regulatory networks of plant disease resistance mediated by R genes, and the identified DEGs will serve as candidates for Xa39 cloning and for further understanding the molecular mechanism of BSHR.


Asunto(s)
Perfilación de la Expresión Génica , Oryza/microbiología , Transcriptoma/genética , Xanthomonas/genética , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Análisis de Secuencia por Matrices de Oligonucleótidos , Oryza/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Transducción de Señal , Xanthomonas/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA