Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Sci Food Agric ; 102(13): 5965-5973, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35445406

RESUMEN

BACKGROUND: Okra pods contain heat-sensitive substances, such as phenolic compounds and other phytochemicals that can be degraded when okra pods are subjected to heat treatment. The understanding of the impact of high humidity hot air impingement blanching (HHAIB) on the changes in physicochemical properties of polysaccharides and phytochemicals of okra pods is of great importance because over-blanching may result in cell membrane disruption and changes in biologically active compounds under prolonged exposure to the thermal treatment. Therefore, the present study aimed to investigate the effect of HHAIB on the changes in physicochemical properties of pectins and phytochemicals extracted from okra pods. RESULTS: Both the HHAIB time and method of extraction influenced their physicochemical characteristics and biological activity. Pectin fractions subjected to HHAIB were composed of polygalacturonic acid, rhamnogalacturonan, glucomannan, galactan, mannose, arabinose, rhamnose, calcium pectate and arabinogalactan. The contents of total phenolics, total flavonoids and antioxidant activity of extracts mostly increased during HHAIB (i.e. up to 19.0%, 13.2% and 35.3%, respectively). However, HHAIB reduced the chlorophyll-a (up to 55.7%) and lycopene (up to 52.6%) contents of okra pods. CONCLUSION: The acquired knowledge may be useful for better understanding and optimization of technologies based on HHAIB treatment. The HHAIB treated okra can be a promising natural alternative in different applications, including its use as a replacement of some ingredients in food or non-food systems as a result of richness in polysaccharides and polyphenols, as well as high antioxidant properties. © 2022 Society of Chemical Industry.


Asunto(s)
Abelmoschus , Abelmoschus/química , Antioxidantes/química , Pared Celular/metabolismo , Calor , Humedad , Fitoquímicos/análisis , Polisacáridos/química
2.
Materials (Basel) ; 17(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612092

RESUMEN

The optimization of structure and thermal properties in 3D-printed insulation materials remains an underexplored area in the literature. This study aims to address this gap by investigating the impact of 3D printing on the thermal properties of manufactured cellular composites. The materials studied were closed-cell foams with a complex cell structure based on the Voronoi cell model, manufactured using incremental technology (3D printing). The influence of the cellular structure of the composite, the type of material used, and the number of layers in the composite structure on its thermal properties, i.e., thermal conductivity coefficient, thermal resistance, and coefficient of heat transfer, was analyzed. Samples of different types of thermosetting resins, characterized by different values of emissivity coefficient, were analyzed. It was shown that both the type of material, the number of layers of the composite, and the number of pores in its structure significantly affect its thermal insulating properties. Thermal conductivity and permeability depended on the number of layers and decreased up to 30% as the number of layers increased from one to four, while thermal resistance increased to 35%. The results indicate that material structure is key in regulating thermal conduction. Controlling the number of cells in a given volume of composite (and thus the size of the air cells) and the number of layers in the composite can be an effective tool in designing materials with high insulation performance. Among the prototype composites produced, the best thermal performance was that of the metalized four-layer cellular composites (λ = 0.035 ± 0.002 W/m·K, Rc = 1.15 ± 0.02 K·m2/W, U = 0.76 ± 0.01 W/m2·K).

3.
J Hazard Mater ; 465: 133066, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38042007

RESUMEN

Incorrect use of neonicotinoid pesticides poses a serious threat to human and pollinator health, as these substances are commonly present in bee products and even drinking water. To combat this threat, the study developed a new method of degrading the pesticide imidacloprid using surface discharge cold plasma oxidation technology. The study showed that this method achieved a very high efficiency of imidacloprid degradation of 91.4%. The main reactive oxygen species (H2O2, O3, ·OH, O2-, 1O2) effectively participated in the decomposition reaction of imidacloprid. Reactive oxygen species were more sensitive to the structure of the nitroimine group. Density functional theory (DFT) further explored the sites of reactive oxygen species attack on imidacloprid and revealed the process of energy change of attacking imidacloprid. In addition, a degradation pathway for imidacloprid was proposed, mainly involving reactive oxygen species chemisorption, a ring-opening intermediate, and complete cleavage of the nitroimine group structure. Model predictions indicated that acute oral and developmental toxicity were significantly reduced after cold plasma treatment, as confirmed by insect experiments. Animal experiments have shown that plasma treatment reduces imidacloprid damage to mice hippocampal tissue structure and inhibits the reduction of brain-derived neurotrophic factor content, thus revealing the detoxification mechanism of the body.


Asunto(s)
Insecticidas , Plaguicidas , Gases em Plasma , Humanos , Abejas , Animales , Ratones , Insecticidas/química , Especies Reactivas de Oxígeno , Estructura Molecular , Peróxido de Hidrógeno , Neonicotinoides/química , Nitrocompuestos/química , Nitrocompuestos/farmacología
4.
Ultrason Sonochem ; 107: 106927, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38820934

RESUMEN

A novel technique was proposed for processing silkworm pupae by combining plasma- activated water (PAW) with ultrasound (US). The microbial diversity and quality characteristics of the silkworm pupae were also evaluated. The results of the microbial diversity analysis indicated that PAW combined with US treatment significantly reduced the relative abundance of Streptococcaceae, Leuconostocaceae, and Acetobacteraceae from 32%, 18% and 16% to 27%, 11% and 11%, respectively. Microstructural analysis demonstrated that the collapse of the internal structure of chitin in silkworm pupae facilitated the release of nutrients and flavour compounds including fatty acids, water-soluble proteins (WSP), amino acids, phenolics, and volatile compounds. Furthermore, the increase in antioxidant capacity and the decrease in catalase activity and malondialdehyde content confirmed the mechanism of quality change. These findings provide new insights into the possible mechanism of PAW combined with US to improve the quality of edible insects.


Asunto(s)
Bombyx , Pupa , Agua , Animales , Pupa/microbiología , Agua/química , Bombyx/química , Ondas Ultrasónicas , Fenómenos Químicos , Antioxidantes/química , Antioxidantes/farmacología , Biodiversidad
5.
Food Chem X ; 16: 100464, 2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36217315

RESUMEN

The effects of different hot-air drying (HAD) temperature (40, 50, 60, and 70 °C) on the drying characteristics, color changes, the contents of α-dicarbonyl compounds (α-DCs), 5-hydroxymethyl furfural (5-HMF) and carotenoids of rape bee pollen were investigated in the study. The results showed that increasing the drying temperature from 40 to 70 °C shortened the drying time by 65 %. HAD caused lower L* and b* values, as well as higher a* values. Browning index and 5-HMF content increased with increasing drying temperature. The relative content of antheraxanthin increased 230 % at 70 °C while lutein and zeaxanthin decreased by 74 and 81 % than that of fresh (non-heated) pollen. The contents of 3-deoxyglucosone, 1-deoxy-2,3-pentosulose, antheraxanthin, and lutein were related to the color deterioration in HAD process in rape bee pollen. This work is of great practical significance to provide scientific basis for quality optimization of bee pollen in the drying process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA