Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Trends Genet ; 38(1): 82-96, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34304914

RESUMEN

DNA methylation has long been considered the primary epigenetic mediator of genomic imprinting in mammals. Recent epigenetic profiling during early mouse development revealed the presence of domains of trimethylation of lysine 27 on histone H3 (H3K27me3) and chromatin compaction specifically at the maternally derived allele, independent of DNA methylation. Within these domains, genes are exclusively expressed from the paternally derived allele. This novel mechanism of noncanonical imprinting plays a key role in the development of mouse extraembryonic tissues and in the regulation of imprinted X-chromosome inactivation, highlighting the importance of parentally inherited epigenetic histone modifications. Here, we discuss the mechanisms underlying H3K27me3-mediated noncanonical imprinting in perspective of the dynamic chromatin landscape during early mouse development and explore evolutionary origins of noncanonical imprinting.


Asunto(s)
Impresión Genómica , Histonas , Animales , Cromatina/genética , Metilación de ADN/genética , Impresión Genómica/genética , Código de Histonas , Histonas/genética , Histonas/metabolismo , Ratones
2.
J Biol Chem ; 299(11): 105279, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37742922

RESUMEN

Thermal proteome profiling (TPP) has significantly advanced the field of drug discovery by facilitating proteome-wide identification of drug targets and off-targets. However, TPP has not been widely applied for high-throughput drug screenings, since the method is labor intensive and requires a lot of measurement time on a mass spectrometer. Here, we present Single-tube TPP with Uniform Progression (STPP-UP), which significantly reduces both the amount of required input material and measurement time, while retaining the ability to identify drug targets for compounds of interest. By using incremental heating of a single sample, changes in protein thermal stability across a range of temperatures can be assessed, while alleviating the need to measure multiple samples heated to different temperatures. We demonstrate that STPP-UP is able to identify the direct interactors for anticancer drugs in both human and mice cells. In summary, the STPP-UP methodology represents a useful tool to advance drug discovery and drug repurposing efforts.


Asunto(s)
Antineoplásicos , Proteoma , Ratones , Humanos , Animales , Proteoma/metabolismo , Sistemas de Liberación de Medicamentos , Temperatura , Ensayos Analíticos de Alto Rendimiento , Estabilidad Proteica
3.
Nat Chem Biol ; 17(1): 6-7, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32807970
4.
Cell Stem Cell ; 31(7): 1072-1090.e8, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38754429

RESUMEN

Gastrulation is a critical stage in embryonic development during which the germ layers are established. Advances in sequencing technologies led to the identification of gene regulatory programs that control the emergence of the germ layers and their derivatives. However, proteome-based studies of early mammalian development are scarce. To overcome this, we utilized gastruloids and a multilayered mass spectrometry-based proteomics approach to investigate the global dynamics of (phospho) protein expression during gastruloid differentiation. Our findings revealed many proteins with temporal expression and unique expression profiles for each germ layer, which we also validated using single-cell proteomics technology. Additionally, we profiled enhancer interaction landscapes using P300 proximity labeling, which revealed numerous gastruloid-specific transcription factors and chromatin remodelers. Subsequent degron-based perturbations combined with single-cell RNA sequencing (scRNA-seq) identified a critical role for ZEB2 in mouse and human somitogenesis. Overall, this study provides a rich resource for developmental and synthetic biology communities endeavoring to understand mammalian embryogenesis.


Asunto(s)
Linaje de la Célula , Desarrollo Embrionario , Proteómica , Animales , Ratones , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Análisis de la Célula Individual , Diferenciación Celular , Gástrula/metabolismo , Gastrulación
5.
Life Sci Alliance ; 6(11)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37591722

RESUMEN

Cancer cells make extensive use of the folate cycle to sustain increased anabolic metabolism. Multiple chemotherapeutic drugs interfere with the folate cycle, including methotrexate and 5-fluorouracil that are commonly applied for the treatment of leukemia and colorectal cancer (CRC), respectively. Despite high success rates, therapy-induced resistance causes relapse at later disease stages. Depletion of folylpolyglutamate synthetase (FPGS), which normally promotes intracellular accumulation and activity of natural folates and methotrexate, is linked to methotrexate and 5-fluorouracil resistance and its association with relapse illustrates the need for improved intervention strategies. Here, we describe a novel antifolate (C1) that, like methotrexate, potently inhibits dihydrofolate reductase and downstream one-carbon metabolism. Contrary to methotrexate, C1 displays optimal efficacy in FPGS-deficient contexts, due to decreased competition with intracellular folates for interaction with dihydrofolate reductase. We show that FPGS-deficient patient-derived CRC organoids display enhanced sensitivity to C1, whereas FPGS-high CRC organoids are more sensitive to methotrexate. Our results argue that polyglutamylation-independent antifolates can be applied to exert selective pressure on FPGS-deficient cells during chemotherapy, using a vulnerability created by polyglutamylation deficiency.


Asunto(s)
Antagonistas del Ácido Fólico , Humanos , Antagonistas del Ácido Fólico/farmacología , Metotrexato/farmacología , Tetrahidrofolato Deshidrogenasa/genética , Ácido Fólico/farmacología , Fluorouracilo/farmacología
6.
Nat Cell Biol ; 24(6): 858-871, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35697783

RESUMEN

Human naive pluripotent stem cells have unrestricted lineage potential. Underpinning this property, naive cells are thought to lack chromatin-based lineage barriers. However, this assumption has not been tested. Here we define the chromatin-associated proteome, histone post-translational modifications and transcriptome of human naive and primed pluripotent stem cells. Our integrated analysis reveals differences in the relative abundance and activities of distinct chromatin modules. We identify a strong enrichment of polycomb repressive complex 2 (PRC2)-associated H3K27me3 in the chromatin of naive pluripotent stem cells and H3K27me3 enrichment at promoters of lineage-determining genes, including trophoblast regulators. PRC2 activity acts as a chromatin barrier restricting the differentiation of naive cells towards the trophoblast lineage, whereas inhibition of PRC2 promotes trophoblast-fate induction and cavity formation in human blastoids. Together, our results establish that human naive pluripotent stem cells are not epigenetically unrestricted, but instead possess chromatin mechanisms that oppose the induction of alternative cell fates.


Asunto(s)
Células Madre Pluripotentes , Complejo Represivo Polycomb 2 , Diferenciación Celular/genética , Cromatina/genética , Histonas/genética , Humanos , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Trofoblastos/metabolismo
7.
Stem Cell Reports ; 15(6): 1287-1300, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-32763159

RESUMEN

Polycomb Repressive Complex 2 (PRC2) plays an essential role in gene repression during development, catalyzing H3 lysine 27 trimethylation (H3K27me3). MTF2 in the PRC2.1 sub-complex, and JARID2 in PRC2.2, are central in core PRC2 recruitment to target genes in mouse embryonic stem cells (mESCs). To investigate how PRC2.1 and PRC2.2 cooperate, we combined Polycomb mutant mESCs with chemical inhibition of binding to H3K27me3. We find that PRC2.1 and PRC2.2 mediate two distinct paths for recruitment, which are mutually reinforced. Whereas PRC2.1 recruitment is mediated by MTF2 binding to DNA, JARID2-containing PRC2.2 recruitment is more dependent on PRC1. Both recruitment axes are supported by core subunit EED binding to H3K27me3, but EED inhibition exhibits a more pronounced effect in Jarid2 null cells. Finally, we show that PRC1 and PRC2 enhance reciprocal binding. Together, these data disentangle the interdependent interactions that are important for PRC2 recruitment.


Asunto(s)
Células Madre Embrionarias de Ratones/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Animales , Histonas/genética , Histonas/metabolismo , Ratones , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 2/genética
8.
J Exp Med ; 216(9): 2057-2070, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31270247

RESUMEN

Vaccination against measles, mumps, and rubella (MMR) and yellow fever (YF) with live attenuated viruses can rarely cause life-threatening disease. Severe illness by MMR vaccines can be caused by inborn errors of type I and/or III interferon (IFN) immunity (mutations in IFNAR2, STAT1, or STAT2). Adverse reactions to the YF vaccine have remained unexplained. We report two otherwise healthy patients, a 9-yr-old boy in Iran with severe measles vaccine disease at 1 yr and a 14-yr-old girl in Brazil with viscerotropic disease caused by the YF vaccine at 12 yr. The Iranian patient is homozygous and the Brazilian patient compound heterozygous for loss-of-function IFNAR1 variations. Patient-derived fibroblasts are susceptible to viruses, including the YF and measles virus vaccine strains, in the absence or presence of exogenous type I IFN. The patients' fibroblast phenotypes are rescued with WT IFNAR1 Autosomal recessive, complete IFNAR1 deficiency can result in life-threatening complications of vaccination with live attenuated measles and YF viruses in previously healthy individuals.


Asunto(s)
Patrón de Herencia/genética , Vacuna Antisarampión/efectos adversos , Receptor de Interferón alfa y beta/deficiencia , Vacuna contra la Fiebre Amarilla/efectos adversos , Adolescente , Alelos , Niño , Femenino , Humanos , Inmunidad , Lactante , Interferón Tipo I/metabolismo , Masculino , Vacuna Antisarampión/inmunología , Proteínas Mutantes/metabolismo , Mutación/genética , Linaje , Receptor de Interferón alfa y beta/genética , Transducción de Señal , Vacuna contra la Fiebre Amarilla/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA