Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Prod Rep ; 41(3): 469-511, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38164764

RESUMEN

Covering: 1992 up to 2023Since their discovery, lasso peptides went from peculiarities to be recognized as a major family of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products that were shown to be spread throughout the bacterial kingdom. Microcin J25 was first described in 1992, making it one of the earliest known lasso peptides. No other lasso peptide has since then been studied to such an extent as microcin J25, yet, previous review articles merely skimmed over all the research done on this exceptional lasso peptide. Therefore, to commemorate the 30th anniversary of its first report, we give a comprehensive overview of all literature related to microcin J25. This review article spans the early work towards the discovery of microcin J25, its biosynthetic gene cluster, and the elucidation of its three-dimensional, threaded lasso structure. Furthermore, the current knowledge about the biosynthesis of microcin J25 and lasso peptides in general is summarized and a detailed overview is given on the biological activities associated with microcin J25, including means of self-immunity, uptake into target bacteria, inhibition of the Gram-negative RNA polymerase, and the effects of microcin J25 on mitochondria. The in vitro and in vivo models used to study the potential utility of microcin J25 in a (veterinary) medicine context are discussed and the efforts that went into employing the microcin J25 scaffold in bioengineering contexts are summed up.


Asunto(s)
Antibacterianos , Bacteriocinas , Antibacterianos/farmacología , Bacteriocinas/farmacología , Bacteriocinas/química , Péptidos/farmacología , Péptidos/química , Bacterias
2.
EMBO J ; 36(20): 3062-3079, 2017 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-28864543

RESUMEN

Certain pathogenic bacteria produce and release toxic peptides to ensure either nutrient availability or evasion from the immune system. These peptides are also toxic to the producing bacteria that utilize dedicated ABC transporters to provide self-immunity. The ABC transporter McjD exports the antibacterial peptide MccJ25 in Escherichia coli Our previously determined McjD structure provided some mechanistic insights into antibacterial peptide efflux. In this study, we have determined its structure in a novel conformation, apo inward-occluded and a new nucleotide-bound state, high-energy outward-occluded intermediate state, with a defined ligand binding cavity. Predictive cysteine cross-linking in E. coli membranes and PELDOR measurements along the transport cycle indicate that McjD does not undergo major conformational changes as previously proposed for multi-drug ABC exporters. Combined with transport assays and molecular dynamics simulations, we propose a novel mechanism for toxic peptide ABC exporters that only requires the transient opening of the cavity for release of the peptide. We propose that shielding of the cavity ensures that the transporter is available to export the newly synthesized peptides, preventing toxic-level build-up.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Bacteriocinas/química , Bacteriocinas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , Transporte de Proteínas
3.
Environ Microbiol ; 22(7): 2907-2920, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32363677

RESUMEN

In livestock production, antibiotics are used to promote animal growth, control infections and thereby increase profitability. This practice has led to the emergence of multiresistant bacteria such as Salmonella, of which some serovars are disseminated in the environment. The objective of this study is to evaluate microcin J25 as an inhibitor of Salmonella enterica serovars of various origins including human, livestock and food. Among the 116 isolates tested, 37 (31.8%) were found resistant to at least one antibiotic, and 28 were multiresistant with 19 expressing the penta-resistant phenotype ACSSuT. Microcin J25 inhibited all isolates, with minimal inhibitory concentration values ranging from 0.06 µg/ml (28.4 nM) to 400 µg/ml (189 µM). Interestingly, no cross-resistance was found between microcin J25 and antibiotics. Multiple sequence alignments of genes encoding for the different proteins involved in the recognition and transport of microcin J25 showed that only ferric-hydroxamate uptake is an essential determinant for susceptibility of S. enterica to microcin J25. Examination of Salmonella strains exposed to microcin J25 by transmission electronic microscopy showed for the first-time involvement of a pore formation mechanism. Microcin J25 was a strong inhibitor of several multiresistant isolates of Salmonella and may have a great potential as an alternative to antibiotics.


Asunto(s)
Bacteriocinas/farmacología , Salmonella enterica/genética , Animales , Antibacterianos/farmacología , Genómica , Humanos , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Transmisión , Fenómica , Salmonella enterica/efectos de los fármacos , Salmonella enterica/ultraestructura
4.
Anal Bioanal Chem ; 411(24): 6287-6296, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30707269

RESUMEN

Lasso peptides are a class of bioactive ribosomally synthesized and post-translationally modified peptides (RiPPs) characterized by a mechanically interlocked topology, where the C-terminal tail of the peptide is threaded and trapped within an N-terminal macrolactam ring. BI-32169 is a class III lasso peptide containing one disulfide bond that further stabilizes the lasso structure. In contrast to its branched-cyclic analog, BI-32169 has higher stability and is known to exert a potent inhibitory activity against the human glucagon receptor. In the present work, tandem mass spectrometry, using collision-induced dissociation (CID) and electron capture dissociation (ECD), and trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) experiments were carried out to evidence specific structural signatures of the two topologies. CID experiments showed similar fragmentation patterns for the two topoisomers, where a part of the C-terminal tail remains covalently linked to the macrolactam ring by the disulfide bond, which cannot clearly constitute a signature of the lasso topology. ECD experiments of BI-32169 showed an increase of hydrogen migration events in the loop region when compared with those of its branched-cyclic topoisomer evidencing specific structural signatures for the lasso topology. The high mobility resolving power of TIMS resulted in the identification of multiple conformations for the protonated species but did not allow the clear differentiation of the two topologies in mixture. When in complex with cesium metal ions, a reduced number of conformations led to a clear identification of the two structures. Experiments reducing and alkylating the disulfide bond of BI-32169 showed that the lasso structure is preserved and heat stable and the associated conformational changes provide new insights about the role of the disulfide bond in the inhibitory activity against the human glucagon receptor. Graphical abstract ᅟ.


Asunto(s)
Espectrometría de Movilidad Iónica/métodos , Péptidos Cíclicos/química , Isoformas de Proteínas/química , Espectrometría de Masas en Tándem/métodos , Conformación Proteica
5.
Anal Chem ; 90(8): 5139-5146, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29579382

RESUMEN

Lasso peptides are a fascinating class of bioactive ribosomal natural products characterized by a mechanically interlocked topology. In contrast to their branched-cyclic forms, lasso peptides have higher stability and have become a scaffold for drug development. However, the identification and separation of lasso peptides from their unthreaded topoisomers (branched-cyclic peptides) is analytically challenging since the higher stability is based solely on differences in their tertiary structures. In the present work, a fast and effective workflow is proposed for the separation and identification of lasso from branched cyclic peptides based on differences in their mobility space under native nanoelectrospray ionization-trapped ion mobility spectrometry-mass spectrometry (nESI-TIMS-MS). The high mobility resolving power ( R) of TIMS resulted in the separation of lasso and branched-cyclic topoisomers ( R up to 250, 150 needed on average). The advantages of alkali metalation reagents (e.g., Na, K, and Cs salts) as a way to increase the analytical power of TIMS is demonstrated for topoisomers with similar mobilities as protonated species, efficiently turning the metal ion adduction into additional separation dimensions.


Asunto(s)
Péptidos Cíclicos/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Secuencia de Aminoácidos , Productos Biológicos/análisis , Espectrometría de Movilidad Iónica , Isomerismo , Nanotecnología , Péptidos/análisis , Procesamiento Proteico-Postraduccional
6.
Analyst ; 143(10): 2323-2333, 2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29721555

RESUMEN

Metal ions can play a significant role in a variety of important functions in protein systems including cofactor for catalysis, protein folding, assembly, structural stability and conformational change. In the present work, we examined the influence of alkali (Na, K and Cs), alkaline earth (Mg and Ca) and transition (Co, Ni and Zn) metal ions on the conformational space and analytical separation of mechanically interlocked lasso peptides. Syanodin I, sphingonodin I, caulonodin III and microcin J25, selected as models of lasso peptides, and their respective branched-cyclic topoisomers were submitted to native nESI trapped ion mobility spectrometry-mass spectrometry (TIMS-MS). The high mobility resolving power of TIMS permitted to group conformational families regardless of the metal ion. The lower diversity of conformational families for syanodin I as compared to the other lasso peptides supports that syanodin I probably forms tighter binding interactions with metal ions limiting their conformational space in the gas-phase. Conversely, the higher diversity of conformational families for the branched-cyclic topologies further supports that the metal ions probably interact with a higher number of electronegative groups arising from the fully unconstraint C-terminal part. A correlation between the lengths of the loop and the C-terminal tail with the conformational space of lasso peptides becomes apparent upon addition of metal ions. It was shown that the threaded C-terminal region in lasso peptides allows only for distinct interactions of the metal ion with either residues in the loop or tail region. This limits the size of the interacting region and apparently leads to a bias of metal ion binding in either the loop or tail region, depending whichever section is larger in the respective lasso peptide. For branched-cyclic peptides, the non-restricted C-terminal tail allows metal coordination by residues throughout this region, which can result in gas-phase structures that are sometimes even more compact than the lasso peptides. The high TIMS resolution also resulted in the separation of almost all lasso and branched-cyclic topoisomer metal ions (r ∼ 2.1 on average). It is also shown that the metal incorporation (e.g., doubly cesiated species) can lead to the formation of a simplified IMS pattern (or preferential conformers), which results in baseline analytical separation and discrimination between lasso and branched-cyclic topologies using TIMS-MS.


Asunto(s)
Metales/química , Péptidos/química , Estructura Secundaria de Proteína , Iones , Espectrometría de Masas
7.
J Biol Chem ; 291(41): 21656-21668, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27555327

RESUMEN

The lipid bilayer is a dynamic environment that consists of a mixture of lipids with different properties that regulate the function of membrane proteins; these lipids are either annular, masking the protein hydrophobic surface, or specific lipids, essential for protein function. In this study, using tandem mass spectrometry, we have identified specific lipids associated with the Escherichia coli ABC transporter McjD, which translocates the antibacterial peptide MccJ25. Using non-denaturing mass spectrometry, we show that McjD in complex with MccJ25 survives the gas phase. Partial delipidation of McjD resulted in reduced ATPase activity and thermostability as shown by circular dichroism, both of which could be restored upon addition of defined E. coli lipids. We have resolved a phosphatidylglycerol lipid associated with McjD at 3.4 Å resolution, whereas molecular dynamic simulations carried out in different lipid environments assessed the binding of specific lipids to McjD. Combined, our data show a synergistic effect of zwitterionic and negatively charged lipids on the activity of McjD; the zwitterionic lipids provide structural stability to McjD, whereas the negatively charged lipids are essential for its function.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Antibacterianos/química , Bacteriocinas/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Fosfatidilgliceroles/química , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Antibacterianos/metabolismo , Bacteriocinas/genética , Bacteriocinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Espectrometría de Masas , Simulación de Dinámica Molecular , Fosfatidilgliceroles/metabolismo , Dominios Proteicos , Relación Estructura-Actividad
8.
Proc Natl Acad Sci U S A ; 111(25): 9145-50, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24920594

RESUMEN

Enterobacteriaceae produce antimicrobial peptides for survival under nutrient starvation. Microcin J25 (MccJ25) is an antimicrobial peptide with a unique lasso topology. It is secreted by the ATP-binding cassette (ABC) exporter McjD, which ensures self-immunity of the producing strain through efficient export of the toxic mature peptide from the cell. Here we have determined the crystal structure of McjD from Escherichia coli at 2.7-Å resolution, which is to the authors' knowledge the first structure of an antibacterial peptide ABC transporter. Our functional and biochemical analyses demonstrate McjD-dependent immunity to MccJ25 through efflux of the peptide. McjD can directly bind MccJ25 and displays a basal ATPase activity that is stimulated by MccJ25 in both detergent solution and proteoliposomes. McjD adopts a new conformation, termed nucleotide-bound outward occluded. The new conformation defines a clear cavity; mutagenesis and ligand binding studies of the cavity have identified Phe86, Asn134, and Asn302 as important for recognition of MccJ25. Comparisons with the inward-open MsbA and outward-open Sav1866 structures show that McjD has structural similarities with both states without the intertwining of transmembrane (TM) helices. The occluded state is formed by rotation of TMs 1 and 2 toward the equivalent TMs of the opposite monomer, unlike Sav1866 where they intertwine with TMs 3-6 of the opposite monomer. Cysteine cross-linking studies on the McjD dimer in inside-out membrane vesicles of E. coli confirmed the presence of the occluded state. We therefore propose that the outward-occluded state represents a transition intermediate between the outward-open and inward-open conformation of ABC exporters.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Bacteriocinas , Proteínas de Escherichia coli/química , Escherichia coli/química , Transportadoras de Casetes de Unión a ATP/genética , Sustitución de Aminoácidos , Cristalografía por Rayos X , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutagénesis Sitio-Dirigida , Mutación Missense , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
9.
Chembiochem ; 17(19): 1851-1858, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27514791

RESUMEN

Microcin J25 (MccJ25) has emerged as an excellent model to understand the maturation of ribosomal precursor peptides into the entangled lasso fold. MccJ25 biosynthesis relies on the post-translational modification of the precursor McjA by the ATP-dependent protease McjB and the lactam synthetase McjC. Here, using NMR spectroscopy, we showed that McjA is an intrinsically disordered protein without detectable conformational preference, which emphasizes the active role of the maturation machinery on the three-dimensional folding of MccJ25. We further showed that the N-terminal region of the leader peptide is involved in interaction with both maturation enzymes and identified a predominant interaction of V43-S55 in the core McjA sequence with McjC. Moreover, we demonstrated that residues K23-Q34 in the N-terminal McjA leader peptide tend to adopt a helical conformation in the presence of membrane mimics, implying a role in directing McjA to the membrane in the vicinity of the lasso synthetase/export machinery. These data provide valuable insights into the initial molecular recognition steps in the MccJ25 maturation process.


Asunto(s)
Bacteriocinas/metabolismo , Péptidos/metabolismo , Bacteriocinas/química , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Péptidos/química , Conformación Proteica , Pliegue de Proteína
10.
Nat Chem Biol ; 10(5): 340-2, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24705590

RESUMEN

The lasso peptide microcin J25 is known to hijack the siderophore receptor FhuA for initiating internalization. Here, we provide what is to our knowledge the first structural evidence on the recognition mechanism, and our biochemical data show that another closely related lasso peptide cannot interact with FhuA. Our work provides an explanation on the narrow activity spectrum of lasso peptides and opens the path to the development of new antibacterials.


Asunto(s)
Antiinfecciosos/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Bacteriocinas/metabolismo , Receptores de Superficie Celular/metabolismo , Antiinfecciosos/farmacología , Endocitosis , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Conformación Proteica
11.
J Phys Chem A ; 120(21): 3810-6, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27171649

RESUMEN

Lasso peptides are natural products characterized by a mechanically interlocked topology. The conformation of lasso peptides has been probed in the gas phase using ion mobility-mass spectrometry (IM-MS) which showed differences in the lasso and their unthreaded branched-cyclic topoisomers depending on the ion charge states. To further characterize the evolution of gas phase conformations as a function of the charge state and to assess associated changes in the hydrogen bond network, infrared multiple photon dissociation (IRMPD) action spectroscopy was carried out on two representative lasso peptides, microcin J25 (MccJ25) and capistruin, and their branched-cyclic topoisomers. For the branched-cyclic topoisomers, spectroscopic evidence of a disruption of neutral hydrogen bonds were found when comparing the 3+ and 4+ charge states. In contrast, for the lasso peptides, the IRMPD spectra were found to be similar for the two charge states, suggesting very little difference in gas phase conformations upon addition of a proton. The IRMPD data were thus found consistent and complementary to IM-MS, confirming the stable and compact structure of lasso peptides in the gas phase.


Asunto(s)
Bacteriocinas/química , Gases/química , Péptidos/química , Secuencia de Aminoácidos , Enlace de Hidrógeno , Isomerismo , Modelos Moleculares , Conformación Proteica , Espectrofotometría Infrarroja
12.
Anal Chem ; 87(2): 1166-72, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25495527

RESUMEN

Ion mobility mass spectrometry data were collected on a set of five class II lasso peptides and their branched-cyclic topoisomers prepared in denaturing solvent conditions with and without sulfolane as a supercharging agent. Sulfolane was shown not to affect ion mobility results and to allow the formation of highly charged multiply protonated molecules. Drift time values of low charged multiply protonated molecules were found to be similar for the two peptide topologies, indicating the branched-cyclic peptide to be folded in the gas phase into a conformation as compact as the lasso peptide. Conversely, high charge states enabled a discrimination between lasso and branched-cyclic topoisomers, as the former remained compact in the gas phase while the branched-cyclic topoisomer unfolded. Comparison of the ion mobility mass spectrometry data of the lasso and branched-cyclic peptides for all charge states, including the higher charge states obtained with sulfolane, yielded three trends that allowed differentiation of the lasso form from the branched-cyclic topology: low intensity of highly charged protonated molecules, even with the supercharging agent, low change in collision cross sections with increasing charge state of all multiply protonated molecules, and narrow ion mobility peak widths associated with the coexistence of fewer conformations and possible conformational changes.


Asunto(s)
Péptidos Cíclicos/química , Protones , Rotaxanos/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Tiofenos/química , Conformación Proteica , Estereoisomerismo
13.
Rapid Commun Mass Spectrom ; 29(15): 1411-9, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26147481

RESUMEN

RATIONALE: Capistruin is a peptide synthesized by Burkholderia thailandensis E264, which displays a lasso topology. This knot-like structure confers interesting properties to peptides (e.g. antibacterial). Therefore, it is important to evaluate the sensitivity of structural characterization methods to such topological constraints. METHODS: Ion mobility mass spectrometry (IMS-MS) experiments, using both drift tube and travelling wave instruments, were performed on lasso capistruin and on peptides with the same sequence, but displaying a branched-cyclic (un-threaded) or linear topology. Molecular dynamics (MD) simulations were then performed to further interpret the IMS results in terms of conformation. RESULTS: The collision cross sections (CCSs) measured via IMS for the different forms of capistruin were found to be similar, despite their different topologies for the doubly charged species, but significant differences arise as the charge state is increased. MD simulations for the doubly charged linear peptide were consistent with the hypothesis that salt bridges are present in the gas phase. Moreover, through CCS measurements for peptides with site-specific mutations, the arginine residue at position 11 was found to play a major role in the stabilization of compact structures for the linear peptide. CONCLUSIONS: Differences in peptide topologies did not yield marked signatures in their respective IMS spectra. Such signatures were only visible for relatively high charge states, that allow Coulomb repulsion to force unfolding. At low charge states, the topologically unconstrained linear form of capistruin was found to adopt charge solvation-constrained structures, possibly including salt bridges, with CCSs comparable to those measured for the topologically constrained lasso form.

14.
Chemistry ; 20(22): 6713-20, 2014 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-24668890

RESUMEN

This paper describes the ability of a new class of heterocyclic γ-amino acids named ATCs (4-amino(methyl)-1,3-thiazole-5-carboxylic acids) to induce turns when included in a tetrapeptide template. Both hybrid Ac-Val-(R or S)-ATC-Ile-Ala-NH2 sequences were synthesized and their conformations were studied by circular dichroism, NMR spectroscopy, MD simulations, and DFT calculations. It was demonstrated that the ATCs induced highly stable C9 pseudocycles in both compounds promoting a twist turn and a reverse turn conformation depending on their absolute configurations. As a proof of concept, a bioactive analogue of gramicidin S was successfully designed using an ATC building block as a turn inducer. The NMR solution structure of the analogue adopted an antiparallel ß-pleated sheet conformation similar to that of the natural compound. The hybrid α,γ-cyclopeptide exhibited significant reduced haemotoxicity compared to gramicidin S, while maintaining strong antibacterial activity.


Asunto(s)
Gramicidina/química , Tiazoles/química , Secuencia de Aminoácidos , Aminoácidos/química , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Dicroismo Circular , Diseño de Fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Gramicidina/síntesis química , Gramicidina/farmacología , Espectroscopía de Resonancia Magnética , Conformación Molecular , Simulación de Dinámica Molecular , Oligopéptidos/síntesis química , Oligopéptidos/química , Estructura Secundaria de Proteína
15.
Microb Genom ; 10(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38407259

RESUMEN

Enterobacteriaceae produce an arsenal of antimicrobial compounds including microcins, ribosomally produced antimicrobial peptides showing diverse structures and mechanisms of action. Microcins target close relatives of the producing strain to promote its survival. Their narrow spectrum of antibacterial activity makes them a promising alternative to conventional antibiotics, as it should decrease the probability of resistance dissemination and collateral damage to the host's microbiota. To assess the therapeutic potential of microcins, there is a need to understand the mechanisms of resistance to these molecules. In this study, we performed genomic analyses of the resistance to four microcins [microcin C, a nucleotide peptide; microcin J25, a lasso peptide; microcin B17, a linear azol(in)e-containing peptide; and microcin E492, a siderophore peptide] on a collection of 54 Enterobacteriaceae from three species: Escherichia coli, Salmonella enterica and Klebsiella pneumoniae. A gene-targeted analysis revealed that about half of the microcin-resistant strains presented mutations of genes involved in the microcin mechanism of action, especially those involved in their uptake (fhuA, fepA, cirA and ompF). A genome-wide association study did not reveal any significant correlations, yet relevant genetic elements were associated with microcin resistance. These were involved in stress responses, biofilm formation, transport systems and acquisition of immunity genes. Additionally, microcin-resistant strains exhibited several mutations within genes involved in specific metabolic pathways, especially for S. enterica and K. pneumoniae.


Asunto(s)
Bacteriocinas , Estudio de Asociación del Genoma Completo , Bacteriocinas/genética , Antibacterianos/farmacología , Inmunidad Innata , Enterobacteriaceae/genética , Escherichia coli/genética , Klebsiella pneumoniae/genética , Péptidos
16.
Chemistry ; 19(1): 350-7, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-23180738

RESUMEN

Electron detachment dissociation (EDD) and electron photodetachment dissociation (EPD) are relatively new dissociation methods that involve electron detachment followed by radical-driven dissociation from multiply deprotonated species. EDD yields prompt dissociation whereas only electron detachment is obtained by EPD; subsequent vibrational activation of the charge-reduced radical anion is required to obtain the product ions. Herein, the fragmentation patterns that were obtained by EDD and by vibrational activation of the charge-reduced radical anions that were produced through EDD or EPD (activated-EDD and activated-EPD) were compared. The observed differences were related to the dissociation kinetics and/or the contribution of electron-induced dissociation (EID). Time-resolved double-resonance experiments were performed to measure the dissociation rate constants of the EDD product ions. Differences in the formation kinetics were revealed between the classical EDD/EPD 'a(⋅)(i)/''x(j) complementary ions and some 'a(⋅)(i)/c(i)/'''z(⋅)(j) product ions, which were produced with slower dissociation rate constants, owing to the presence of specific neighbouring side chains. A new fragmentation pathway is proposed for the formation of the slow-kinetics 'a(⋅)(i) ions.


Asunto(s)
Péptidos/química , Secuencia de Aminoácidos , Electrones , Cinética , Espectrometría de Masas/métodos , Datos de Secuencia Molecular , Procesos Fotoquímicos
17.
R Soc Open Sci ; 10(11): 231002, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38026023

RESUMEN

We report the first large-scale palaeoproteomics research on eastern and southern African zooarchaeological samples, thereby refining our understanding of early caprine (sheep and goat) pastoralism in Africa. Assessing caprine introductions is a complicated task because of their skeletal similarity to endemic wild bovid species and the sparse and fragmentary state of relevant archaeological remains. Palaeoproteomics has previously proved effective in clarifying species attributions in African zooarchaeological materials, but few comparative protein sequences of wild bovid species have been available. Using newly generated type I collagen sequences for wild species, as well as previously published sequences, we assess species attributions for elements originally identified as caprine or 'unidentifiable bovid' from 17 eastern and southern African sites that span seven millennia. We identified over 70% of the archaeological remains and the direct radiocarbon dating of domesticate specimens allows refinement of the chronology of caprine presence in both African regions. These results thus confirm earlier occurrences in eastern Africa and the systematic association of domesticated caprines with wild bovids at all archaeological sites. The combined biomolecular approach highlights repeatability and accuracy of the methods for conclusive contribution in species attribution of archaeological remains in dry African environments.

18.
Anal Chem ; 84(11): 4957-64, 2012 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-22571326

RESUMEN

Characterizing the conformation of biomolecules by mass spectrometry still represents a challenge. With their knotted structure involving a N-terminal macrolactam ring where the C-terminal tail of the peptide is threaded and sterically trapped, lasso peptides constitute an attractive model for developing methods for characterizing gas-phase conformation, through comparison with their unknotted topoisomers. Here, the kinetics of electron capture dissociation (ECD) of a lasso peptide, capistruin, was investigated by electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry and compared to that of its branched-cyclic topoisomer, lactam-capistruin. Both peptides produced rather similar ECD spectra but showed different extent of H(•) transfer from c(i)' to z(j)(•) ions. Time-resolved double-resonance experiments under ECD conditions were performed to measure the formation rate constants of typical product ions. Such experiments showed that certain product ions, in particular those related to H(•) transfer, proceeded through long-lived complexes for capistruin, while fast dissociation processes predominated for lactam-capistruin. The formation rate constants of specific ECD product ions enabled a clear differentiation of the lasso and branched-cyclic topoisomers. These results indicate that the formation kinetics of ECD product ions constitute a new way to explore the conformation of biomolecules and distinguish between topoisomers and, more generally, conformers.


Asunto(s)
Electrones , Péptidos/análisis , Protones , Ciclotrones , Gases , Iones , Conformación Proteica , Espectrometría de Masa por Ionización de Electrospray , Espectroscopía Infrarroja por Transformada de Fourier , Estereoisomerismo , Espectrometría de Masas en Tándem , Vibración
19.
Chembiochem ; 13(3): 371-80, 2012 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-22287061

RESUMEN

Microcin J25 is a potent antibacterial peptide produced by Escherichia coli AY25. It displays a lasso structure, which consists of a knot involving an N-terminal macrolactam ring through which the C-terminal tail is threaded and sterically trapped. In this study, we rationally designed and performed site-specific mutations in order to pinpoint the sequence determinants of the lasso topology. Structures of the resulting variants were analysed by a combination of methods (mass spectrometry, NMR spectroscopy, enzymatic digestion), and correlated to the antibacterial activity. The selected mutations resulted in the production of branched-cyclic or lasso variants. The C-terminal residues below the ring (Tyr20, Gly21) and the size of the macrolactam ring were revealed to be critical for both the lasso scaffold and bioactivity, while shortening the loop region (Tyr9-Ser18) or extending the C-terminal tail below the ring did not alter the lasso structure, but differentially affected the antibacterial activity. These results provide new insights for the bioengineering of antibacterial agents using a lasso peptide as template.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Bacteriocinas/química , Bacteriocinas/farmacología , Salmonella enterica/efectos de los fármacos , Secuencia de Aminoácidos , Antibacterianos/metabolismo , Bacteriocinas/genética , Relación Dosis-Respuesta a Droga , Variación Genética/genética , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Relación Estructura-Actividad
20.
Chembiochem ; 13(7): 1046-52, 2012 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-22488892

RESUMEN

Microcin J25 is the archetype of a growing class of bacterial ribosomal peptides possessing a knotted topology (lasso peptides). It consists of an eight-residue macrolactam ring through which the C-terminal tail is threaded. It is biosynthesized as a precursor that is processed by two maturation enzymes (McjB/McjC). Insights into the mechanism of microcin J25 biosynthesis have been provided previously by mutagenesis of the precursor peptide in vivo. In this study we have demonstrated distinct functions of McjB and McjC in vitro for the first time, based on the detection of reaction intermediates. McjB was characterized as a new ATP-dependent cysteine protease, whereas McjC was confirmed to be a lactam synthetase. The two enzymes were functionally interdependent, likely forming a structural complex. Their substrate preference was directly investigated with the aid of mutated precursor peptides. Depending on the substitutions, microcin J25 variants with either a lasso or branched-cyclic topology could be generated in vitro.


Asunto(s)
Bacteriocinas/química , Bacteriocinas/metabolismo , Secuencia de Aminoácidos , Antibacterianos/química , Escherichia coli/química , Escherichia coli/enzimología , Escherichia coli/metabolismo , Datos de Secuencia Molecular , Péptidos/química , Péptidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA