Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 843
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 25(3): 525-536, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38356061

RESUMEN

Regulatory T (Treg) cells are critical for immune tolerance but also form a barrier to antitumor immunity. As therapeutic strategies involving Treg cell depletion are limited by concurrent autoimmune disorders, identification of intratumoral Treg cell-specific regulatory mechanisms is needed for selective targeting. Epigenetic modulators can be targeted with small compounds, but intratumoral Treg cell-specific epigenetic regulators have been unexplored. Here, we show that JMJD1C, a histone demethylase upregulated by cytokines in the tumor microenvironment, is essential for tumor Treg cell fitness but dispensable for systemic immune homeostasis. JMJD1C deletion enhanced AKT signals in a manner dependent on histone H3 lysine 9 dimethylation (H3K9me2) demethylase and STAT3 signals independently of H3K9me2 demethylase, leading to robust interferon-γ production and tumor Treg cell fragility. We have also developed an oral JMJD1C inhibitor that suppresses tumor growth by targeting intratumoral Treg cells. Overall, this study identifies JMJD1C as an epigenetic hub that can integrate signals to establish tumor Treg cell fitness, and we present a specific JMJD1C inhibitor that can target tumor Treg cells without affecting systemic immune homeostasis.


Asunto(s)
Enfermedades Autoinmunes , Humanos , Citocinas , Epigenómica , Histona Demetilasas , Homeostasis , Oxidorreductasas N-Desmetilantes , Histona Demetilasas con Dominio de Jumonji/genética
2.
Mol Cell ; 82(23): 4519-4536.e7, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36384137

RESUMEN

Nutrient sensing and damage sensing are two fundamental processes in living organisms. While hyperglycemia is frequently linked to diabetes-related vulnerability to microbial infection, how body glucose levels affect innate immune responses to microbial invasion is not fully understood. Here, we surprisingly found that viral infection led to a rapid and dramatic decrease in blood glucose levels in rodents, leading to robust AMPK activation. AMPK, once activated, directly phosphorylates TBK1 at S511, which triggers IRF3 recruitment and the assembly of MAVS or STING signalosomes. Consistently, ablation or inhibition of AMPK, knockin of TBK1-S511A, or increased glucose levels compromised nucleic acid sensing, while boosting AMPK-TBK1 cascade by AICAR or TBK1-S511E knockin improves antiviral immunity substantially in various animal models. Thus, we identify TBK1 as an AMPK substrate, reveal the molecular mechanism coupling a dual sensing of glucose and nuclei acids, and report its physiological necessity in antiviral defense.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Ácidos Nucleicos , Animales , Proteínas Quinasas Activadas por AMP/genética , Inmunidad Innata , Antivirales , Glucosa
3.
EMBO J ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304793

RESUMEN

Mechanical control is fundamental for cellular localization within a tissue, including for tumor-associated macrophages (TAMs). While the innate immune sensing pathways cGAS-STING and RLR-MAVS impact the pathogenesis and therapeutics of malignant diseases, their effects on cell residency and motility remain incompletely understood. Here, we uncovered that TBK1 kinase, activated by cGAS-STING or RLR-MAVS signaling in macrophages, directly phosphorylates and mobilizes Zyxin, a key regulator of actin dynamics. Under pathological conditions and in STING or MAVS signalosomes, TBK1-mediated Zyxin phosphorylation at S143 facilitates rapid recruitment of phospho-Zyxin to focal adhesions, leading to subsequent F-actin reorganization and reduced macrophage migration. Intratumoral STING-TBK1-Zyxin signaling was evident in TAMs and critical in antitumor immunity. Furthermore, myeloid-specific or global disruption of this signaling decreased the population of CD11b+ F4/80+ TAMs and promoted PD-1-mediated antitumor immunotherapy. Thus, our findings identify a new biological function of innate immune sensing pathways by regulating macrophage tissue localization, thus providing insights into context-dependent mitigation of antitumor immunity.

4.
Mol Cell ; 80(5): 810-827.e7, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33171123

RESUMEN

Mitochondrial morphology shifts rapidly to manage cellular metabolism, organelle integrity, and cell fate. It remains unknown whether innate nucleic acid sensing, the central and general mechanisms of monitoring both microbial invasion and cellular damage, can reprogram and govern mitochondrial dynamics and function. Here, we unexpectedly observed that upon activation of RIG-I-like receptor (RLR)-MAVS signaling, TBK1 directly phosphorylated DRP1/DNM1L, which disabled DRP1, preventing its high-order oligomerization and mitochondrial fragmentation function. The TBK1-DRP1 axis was essential for assembly of large MAVS aggregates and healthy antiviral immunity and underlay nutrient-triggered mitochondrial dynamics and cell fate determination. Knockin (KI) strategies mimicking TBK1-DRP1 signaling produced dominant-negative phenotypes reminiscent of human DRP1 inborn mutations, while interrupting the TBK1-DRP1 connection compromised antiviral responses. Thus, our findings establish an unrecognized function of innate immunity governing both morphology and physiology of a major organelle, identify a lacking loop during innate RNA sensing, and report an elegant mechanism of shaping mitochondrial dynamics.


Asunto(s)
Dinaminas/metabolismo , Mitocondrias/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , ARN/metabolismo , Pez Cebra/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/metabolismo , Dinaminas/genética , Células HCT116 , Células HEK293 , Humanos , Masculino , Ratones , Ratones Transgénicos , Mutación , Proteínas Serina-Treonina Quinasas/genética , ARN/genética , Transducción de Señal/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(36): e2409493121, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39190350

RESUMEN

Characterized by progressive degeneration of retinal ganglion cells (RGCs) and vision loss, glaucoma is the primary cause of irreversible blindness, incurable and affecting over 78 million patients. However, pathogenic mechanisms leading to glaucoma-induced RGC loss are incompletely understood. Unexpectedly, we found that cGAS-STING (2'3'-cyclic GMP-AMP-stimulator of interferon genes) signaling, which surveils displaced double-stranded DNA (dsDNA) in the cytosol and initiates innate immune responses, was robustly activated during glaucoma in retinal microglia in distinct murine models. Global or microglial deletion of STING markedly relieved glaucoma symptoms and protected RGC degeneration and vision loss, while mice bearing genetic cGAS-STING supersensitivity aggravated retinal neuroinflammation and RGC loss. Mechanistically, dsDNA from tissue injury activated microglial cGAS-STING signaling, causing deleterious macroglia reactivity in retinas by cytokine-mediated microglia-macroglia interactions, progressively driving apoptotic death of RGCs. Remarkably, preclinical investigations of targeting cGAS-STING signaling by intraocular injection of TBK1i or anti-IFNAR1 antibody prevented glaucoma-induced losses of RGCs and vision. Therefore, we unravel an essential role of cGAS-STING signaling underlying glaucoma pathogenesis and suggest promising therapeutic strategies for treating this devastating disease.


Asunto(s)
Glaucoma , Proteínas de la Membrana , Microglía , Nucleotidiltransferasas , Transducción de Señal , Animales , Ratones , Modelos Animales de Enfermedad , Glaucoma/patología , Glaucoma/metabolismo , Glaucoma/inmunología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Microglía/patología , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Células Ganglionares de la Retina/patología , Células Ganglionares de la Retina/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(6): e2202584120, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36730203

RESUMEN

Model organisms are instrumental substitutes for human studies to expedite basic, translational, and clinical research. Despite their indispensable role in mechanistic investigation and drug development, molecular congruence of animal models to humans has long been questioned and debated. Little effort has been made for an objective quantification and mechanistic exploration of a model organism's resemblance to humans in terms of molecular response under disease or drug treatment. We hereby propose a framework, namely Congruence Analysis for Model Organisms (CAMO), for transcriptomic response analysis by developing threshold-free differential expression analysis, quantitative concordance/discordance scores incorporating data variabilities, pathway-centric downstream investigation, knowledge retrieval by text mining, and topological gene module detection for hypothesis generation. Instead of a genome-wide vague and dichotomous answer of "poorly" or "greatly" mimicking humans, CAMO assists researchers to numerically quantify congruence, to dissect true cross-species differences from unwanted biological or cohort variabilities, and to visually identify molecular mechanisms and pathway subnetworks that are best or least mimicked by model organisms, which altogether provides foundations for hypothesis generation and subsequent translational decisions.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Animales , Humanos , Genoma , Proteómica , Modelos Animales
7.
Nat Immunol ; 14(5): 454-60, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23502856

RESUMEN

NLRP3 forms an inflammasome with its adaptor ASC, and its excessive activation can cause inflammatory diseases. However, little is known about the mechanisms that control assembly of the inflammasome complex. Here we show that microtubules mediated assembly of the NLRP3 inflammasome. Inducers of the NLRP3 inflammasome caused aberrant mitochondrial homeostasis to diminish the concentration of the coenzyme NAD(+), which in turn inactivated the NAD(+)-dependent α-tubulin deacetylase sirtuin 2; this resulted in the accumulation of acetylated α-tubulin. Acetylated α-tubulin mediated the dynein-dependent transport of mitochondria and subsequent apposition of ASC on mitochondria to NLRP3 on the endoplasmic reticulum. Therefore, in addition to direct activation of NLRP3, the creation of optimal sites for signal transduction by microtubules is required for activation of the entire NLRP3 inflammasome.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas del Citoesqueleto/metabolismo , Retículo Endoplásmico/metabolismo , Inflamasomas/metabolismo , Mitocondrias/fisiología , Acetilación , Animales , Proteínas Reguladoras de la Apoptosis , Proteínas Adaptadoras de Señalización CARD , Proteínas Portadoras/inmunología , Línea Celular , Corriente Citoplasmática , Proteínas del Citoesqueleto/genética , Dineínas/metabolismo , Femenino , Ratones , Ratones Endogámicos C57BL , Microtúbulos/metabolismo , NAD/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR , Transducción de Señal , Sirtuina 2/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
8.
FASEB J ; 38(1): e23354, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38085162

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide, and the development of novel therapeutic strategies for HNSCC requires a profound understanding of tumor cells and the tumor microenvironment (TME). Additionally, HNSCC has a poor prognosis, necessitating the use of genetic markers for predicting clinical outcomes in HNSCC. In this study, we performed single-cell sequencing analysis on tumor tissues from seven HNSCC patients, along with one adjacent normal tissue. Firstly, the analysis of epithelial cell clusters revealed two clusters of malignant epithelial cells, characterized by unique gene expression patterns and dysregulated signaling pathways compared to normal epithelial cells. Secondly, the examination of the TME unveiled extensive crosstalk between fibroblasts and malignant epithelial cells, potentially mediated through ligand-receptor interactions such as COL1A1-SDC1, COL1A1-CD44, and COL1A2-SDC1. Furthermore, transcriptional heterogeneity was observed in immune cells present in the TME, including macrophages and dendritic cells. Finally, leveraging the gene expression profiles of malignant epithelial cells, we developed a prognostic model comprising six genes, which we validated using two independent datasets. These findings shed light on the heterogeneity within HNSCC tumors and the intricate interplay between malignant cells and the TME. Importantly, the developed prognostic model demonstrates high efficacy in predicting the survival outcomes of HNSCC patients.


Asunto(s)
Carcinoma , Neoplasias de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Pronóstico , Neoplasias de Cabeza y Cuello/genética , Células Epiteliales , Microambiente Tumoral/genética
9.
PLoS Comput Biol ; 20(1): e1011754, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38198519

RESUMEN

Cancer models are instrumental as a substitute for human studies and to expedite basic, translational, and clinical cancer research. For a given cancer type, a wide selection of models, such as cell lines, patient-derived xenografts, organoids and genetically modified murine models, are often available to researchers. However, how to quantify their congruence to human tumors and to select the most appropriate cancer model is a largely unsolved issue. Here, we present Congruence Analysis and Selection of CAncer Models (CASCAM), a statistical and machine learning framework for authenticating and selecting the most representative cancer models in a pathway-specific manner using transcriptomic data. CASCAM provides harmonization between human tumor and cancer model omics data, systematic congruence quantification, and pathway-based topological visualization to determine the most appropriate cancer model selection. The systems approach is presented using invasive lobular breast carcinoma (ILC) subtype and suggesting CAMA1 followed by UACC3133 as the most representative cell lines for ILC research. Two additional case studies for triple negative breast cancer (TNBC) and patient-derived xenograft/organoid (PDX/PDO) are further investigated. CASCAM is generalizable to any cancer subtype and will authenticate cancer models for faithful non-human preclinical research towards precision medicine.


Asunto(s)
Medicina de Precisión , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Perfilación de la Expresión Génica , Análisis de Sistemas
10.
J Neuroinflammation ; 21(1): 215, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39218898

RESUMEN

BACKGROUND: Alzheimer's disease (AD) features progressive neurodegeneration and microglial activation that results in dementia and cognitive decline. The release of soluble amyloid (Aß) oligomers into the extracellular space is an early feature of AD pathology. This can promote excitotoxicity and microglial activation. Microglia can adopt several activation states with various functional outcomes. Protective microglial activation states have been identified in response to Aß plaque pathology in vivo. However, the role of microglia and immune mediators in neurotoxicity induced by soluble Aß oligomers is unclear. Further, there remains a need to identify druggable molecular targets that promote protective microglial states to slow or prevent the progression of AD. METHODS: Hippocampal entorhinal brain slice culture (HEBSC) was employed to study mechanisms of Aß1-42 oligomer-induced neurotoxicity as well as the role of microglia. The roles of glutamate hyperexcitation and immune signaling in Aß-induced neurotoxicity were assessed using MK801 and neutralizing antibodies to the TNF-related apoptosis-inducing ligand (TRAIL) respectively. Microglial activation state was manipulated using Gi-hM4di designer receptor exclusively activated by designer drugs (DREADDs), microglial depletion with the colony-stimulating factor 1 receptor (CSF1R) antagonist PLX3397, and microglial repopulation (PLX3397 withdrawal). Proteomic changes were assessed by LC-MS/MS in microglia isolated from control, repopulated, or Aß-treated HEBSCs. RESULTS: Neurotoxicity induced by soluble Aß1-42 oligomers involves glutamatergic hyperexcitation caused by the proinflammatory mediator and death receptor ligand TRAIL. Microglia were found to have the ability to both promote and restrain Aß-induced toxicity. Induction of microglial Gi-signaling with hM4di to prevent pro-inflammatory activation blunted Aß neurotoxicity, while microglial depletion with CSF1R antagonism worsened neurotoxicity caused by Aß as well as TRAIL. HEBSCs with repopulated microglia, however, showed a near complete resistance to Aß-induced neurotoxicity. Comparison of microglial proteomes revealed that repopulated microglia have a baseline anti-inflammatory and trophic phenotype with a predicted pathway activation that is nearly opposite that of Aß-exposed microglia. mTORC2 and IRF7 were identified as potential targets for intervention. CONCLUSION: Microglia are key mediators of both protection and neurodegeneration in response to Aß. Polarizing microglia toward a protective state could be used as a preventative strategy against Aß-induced neurotoxicity.


Asunto(s)
Péptidos beta-Amiloides , Microglía , Fragmentos de Péptidos , Ligando Inductor de Apoptosis Relacionado con TNF , Microglía/metabolismo , Microglía/efectos de los fármacos , Péptidos beta-Amiloides/toxicidad , Péptidos beta-Amiloides/metabolismo , Animales , Fragmentos de Péptidos/toxicidad , Fragmentos de Péptidos/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/toxicidad , Ratones , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Ratones Endogámicos C57BL , Corteza Entorrinal/metabolismo , Corteza Entorrinal/efectos de los fármacos , Corteza Entorrinal/patología , Técnicas de Cultivo de Órganos
11.
Small ; 20(35): e2401622, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38682610

RESUMEN

Single-network hydrogels are often too fragile to withstand mechanical loading, whereas double-network hydrogels typically exhibit significant hysteresis during cyclic stretching-releasing process due to the presence of a sacrificial network. Consequently, it is a considerable challenge for designing hydrogels that are both low in hysteresis and high in toughness for applications requiring dynamic mechanical loads. Herein, the study introduced a novel "sliding tangle island" strategy for creating tough and low-hysteresis hydrogels, which are prepared through in situ polymerization of highly concentrated acrylamides (AM) to form numerous entanglements within the MXene spacing without any chemical crosslinker. The MXene entangled with long polyacrylamide (PAM) chains to form tangle island that served as a relay station to transmit stress to neighboring molecular chains. This mechanism helps alleviate stress concentration and enhances energy dissipation efficiency, thereby reducing mechanical hysteresis. The resulting hydrogel exhibited exceptional properties, including high stretchability (≈900%), low hysteresis (less than 7%), high toughness (1.34 MJ m-3), and excellent sensing performance to rival the commercial hydrogel electrode. Therefore, this work sheds light on feasible design of energy dissipation structure to reduce the hysteresis of the composite hydrogels.

12.
BMC Cancer ; 24(1): 317, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454344

RESUMEN

BACKGROUND: Glioblastoma multiforme (GBM) is the most aggressive form of brain cancer, and chemoresistance poses a significant challenge to the survival and prognosis of GBM. Although numerous regulatory mechanisms that contribute to chemoresistance have been identified, many questions remain unanswered. This study aims to identify the mechanism of temozolomide (TMZ) resistance in GBM. METHODS: Bioinformatics and antibody-based protein detection were used to examine the expression of E2F7 in gliomas and its correlation with prognosis. Additionally, IC50, cell viability, colony formation, apoptosis, doxorubicin (Dox) uptake, and intracranial transplantation were used to confirm the role of E2F7 in TMZ resistance, using our established TMZ-resistance (TMZ-R) model. Western blot and ChIP experiments provided confirmation of p53-driven regulation of E2F7. RESULTS: Elevated levels of E2F7 were detected in GBM tissue and were correlated with a poor prognosis for patients. E2F7 was found to be upregulated in TMZ-R tumors, and its high levels were linked to increased chemotherapy resistance by limiting drug uptake and decreasing DNA damage. The expression of E2F7 was also found to be regulated by the activation of p53. CONCLUSIONS: The high expression of E2F7, regulated by activated p53, confers chemoresistance to GBM cells by inhibiting drug uptake and DNA damage. These findings highlight the significant connection between sustained p53 activation and GBM chemoresistance, offering the potential for new strategies to overcome this resistance.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Factor de Transcripción E2F7/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Pronóstico , Temozolomida/farmacología , Temozolomida/uso terapéutico , Proteína p53 Supresora de Tumor/genética
13.
PLoS Biol ; 19(2): e3001122, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33630828

RESUMEN

The Hippo-YAP pathway responds to diverse environmental cues to manage tissue homeostasis, organ regeneration, tumorigenesis, and immunity. However, how phosphatase(s) directly target Yes-associated protein (YAP) and determine its physiological activity are still inconclusive. Here, we utilized an unbiased phosphatome screening and identified protein phosphatase magnesium-dependent 1A (PPM1A/PP2Cα) as the bona fide and physiological YAP phosphatase. We found that PPM1A was associated with YAP/TAZ in both the cytoplasm and the nucleus to directly eliminate phospho-S127 on YAP, which conferring YAP the nuclear distribution and transcription potency. Accordingly, genetic ablation or depletion of PPM1A in cells, organoids, and mice elicited an enhanced YAP/TAZ cytoplasmic retention and resulted in the diminished cell proliferation, severe gut regeneration defects in colitis, and impeded liver regeneration upon injury. These regeneration defects in murine model were largely rescued via a genetic large tumor suppressor kinase 1 (LATS1) deficiency or the pharmacological inhibition of Hippo-YAP signaling. Therefore, we identify a physiological phosphatase of YAP/TAZ, describe its critical effects in YAP/TAZ cellular distribution, and demonstrate its physiological roles in mammalian organ regeneration.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína Fosfatasa 2C/metabolismo , Regeneración/fisiología , Factores de Transcripción/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Colitis/patología , Humanos , Intestinos/fisiología , Regeneración Hepática/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Organoides , Proteína Fosfatasa 2C/genética , Transducción de Señal , Proteínas Señalizadoras YAP
14.
J Org Chem ; 89(16): 11558-11566, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39082143

RESUMEN

Efficient copper-catalyzed radical thiocyanosulfonylation of alkenes and alkynes with potassium thiocyanate and sodium phenylsulfinate is described. The reactions provide general and convenient methods toward the synthesis of ß-thiocyanoalkyl sulfones and ß-thiocyanoalkenyl sulfones, respectively, in satisfactory yields. Based on conducted mechanistic experiments, a mechanism involving oxidative generation of sulfonyl radicals and subsequent addition to alkenes followed by Cu-assisted thiocyanation is proposed. Moreover, the practicability of the reaction is successfully demonstrated by its successful application on a gram scale.

15.
Environ Sci Technol ; 58(9): 4438-4449, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38330552

RESUMEN

Dechlorination of chloropyridines can eliminate their detrimental environmental effects. However, traditional dechlorination technology cannot efficiently break the C-Cl bond of chloropyridines, which is restricted by the uncontrollable nonselective species. Hence, we propose the carbonate species-activated hydrogen peroxide (carbonate species/H2O2) process wherein the selective oxidant (peroxymonocarbonate ion, HCO4-) and selective reductant (hydroperoxide anion, HO2-) controllably coexist by manipulation of reaction pH. Taking 2-chloropyridine (Cl-Py) as an example, HCO4- first induces Cl-Py into pyridine N-oxidation intermediates, which then suffer from the nucleophilic dechlorination by HO2-. The obtained dechlorination efficiencies in the carbonate species/H2O2 process (32.5-84.5%) based on the cooperation of HCO4- and HO2- are significantly higher than those in the HO2--mediated sodium hydroxide/hydrogen peroxide process (0-43.8%). Theoretical calculations confirm that pyridine N-oxidation of Cl-Py can effectively lower the energy barrier of the dechlorination process. Moreover, the carbonate species/H2O2 process exhibits superior anti-interference performance and low electric energy consumption. Furthermore, Cl-Py is completely detoxified via the carbonate species/H2O2 process. More importantly, the carbonate species/H2O2 process is applicable for efficient dehalogenation of halogenated pyridines and pyrazines. This work offers a simple and useful strategy to enhance the dehalogenation efficiency of halogenated organics and sheds new insights into the application of the carbonate species/H2O2 process in practical environmental remediation.


Asunto(s)
Peróxido de Hidrógeno , Piridinas , Peróxido de Hidrógeno/química , Oxidación-Reducción , Carbonatos
16.
Environ Sci Technol ; 58(9): 4145-4154, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38381076

RESUMEN

The deactivation of selective catalytic reduction (SCR) catalysts caused by alkali metal poisoning remains an insurmountable challenge. In this study, we examined the impact of Na poisoning on the performance of Fe and Mo co-doped TiO2 (FeaMobTiOx) catalysts in the SCR reaction and revealed the related alkali resistance mechanism. On the obtained Fe1Mo2.6TiOx catalyst, the synergistic catalytic effect of uniformly dispersed FeOx and MoOx species leads to remarkable catalytic activity, with over 90% NO conversion achieved in a wide temperature range of 210-410 °C. During the Na poisoning process, Na ions predominantly adsorb on the MoOx species, which exhibit stronger alkali resistance, effectively safeguarding the FeOx species. This preferential adsorption minimizes the negative effect of Na poisoning on Fe1Mo2.6TiOx. Moreover, Na poisoning has little influence on the Eley-Rideal reaction pathway involving adsorbed NHx reacting with gaseous NOx. After Na poisoning, the Lewis acid sites were deteriorated, while the abundant Brønsted acid sites ensured sufficient NHx adsorption. As a benefit from the self-defense effects of active MoOx species for alkali capture, FeaMobTiOx exhibits exceptional alkali resistance in the SCR reaction. This research provides valuable insights for the design of highly efficient and alkali-resistant SCR catalysts.


Asunto(s)
Álcalis , Amoníaco , Catálisis , Ácidos de Lewis , Metales
17.
Environ Sci Technol ; 58(12): 5394-5404, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38463002

RESUMEN

Conventional microalgal-bacterial consortia have limited capacity to treat low-C/N wastewater due to carbon limitation and single nitrogen (N) removal mode. In this work, indigenous synergetic microalgal-bacterial consortia with high N removal performance and bidirectional interaction were successful in treating rare earth tailing wastewaters with low-C/N. Ammonia removal reached 0.89 mg N L-1 h-1, 1.84-fold more efficient than a common microalgal-bacterial system. Metagenomics-based metabolic reconstruction revealed bidirectional microalgal-bacterial interactions. The presence of microalgae increased the abundance of bacterial N-related genes by 1.5- to 57-fold. Similarly, the presence of bacteria increased the abundance of microalgal N assimilation by 2.5- to 15.8-fold. Furthermore, nine bacterial species were isolated, and the bidirectional promotion of N removal by the microalgal-bacterial system was verified. The mechanism of microalgal N assimilation enhanced by indole-3-acetic acid was revealed. In addition, the bidirectional mode of the system ensured the scavenging of toxic byproducts from nitrate metabolism to maintain the stability of the system. Collectively, the bidirectional enhancement system of synergetic microalgae-bacteria was established as an effective N removal strategy to broaden the stable application of this system for the effective treatment of low C/N ratio wastewater.


Asunto(s)
Microalgas , Aguas Residuales , Microalgas/metabolismo , Desnitrificación , Nitrógeno/metabolismo , Bacterias/metabolismo , Biomasa
18.
BMC Pediatr ; 24(1): 220, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561714

RESUMEN

BACKGROUND: Sleep-disordered breathing (SDB) during childhood is common and includes a range of breathing abnormalities that range from primary snoring (PS) to obstructive sleep apnea syndrome (OSAS).Studies have shown that not only OSAS, but also PS, which is originally considered harmless, could cause cardiovascular, cognitive, behavioral, and psychosocial problems. Many researches are focused on the relation of OSA and serum lipid levels. However, little studies are focused on PS and serum lipid levels in children.We evaluated whether serum lipid (total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C),low-density lipoprotein cholesterol (LDL-C)) concentrations were associated with specific components of SDB, including indices of oxygen reduction index, lowest oxygen saturation, mean oxygen saturation. And we explored whether serum lipid levels were associated with different degree sleep disordered (PS and OSA group) and obese. METHODS: This was a cross-sectional study. Children who were complained by their guardians with habitual snoring and(or) mouth breathing were collected in the SDB group. Normal children without sleep problem were matched in the control group. Subjects in the SDB group underwent polysomnography. The serum lipid profiles of all the children included TC, TG, HDL-C and LDL-C concentrations were measured by appropriate enzymatic assays. RESULTS: A total of 241 with Apnea/Hypopnea Index ≥ 5 (AHI) were assigned to the OSAS group and the remaining 155 with normal AHI were assigned to the PS group. The values of TC, TG, LDL-C and LDL/HDL were significantly higher in the OSAS group than in the PS group, and the values in the PS group were significantly higher than the control group. Multiple regression analysis revealed serum TG only correlated negatively with lowest oxygen saturation. Body mass index-z score has a positive effect on TG in all the 1310 children (P = 0.031) and in SDB 396 children(P = 0.012). The level of serum TG in obese group was significantly higher than that in non-obese group. CONCLUSIONS: SDB had a very obvious effect on blood lipids, whereas PS without apnea and hypoxia. Obese only affects the aggregation of TG. TRIAL REGISTRATION: ChiCTR1900026807(2019.10.23).


Asunto(s)
Síndromes de la Apnea del Sueño , Apnea Obstructiva del Sueño , Niño , Humanos , Ronquido , Estudios de Casos y Controles , LDL-Colesterol , Estudios Transversales , Síndromes de la Apnea del Sueño/complicaciones , Apnea Obstructiva del Sueño/complicaciones , Triglicéridos , HDL-Colesterol , Lípidos , Obesidad/complicaciones , Hipoxia/etiología
19.
BMC Pediatr ; 24(1): 173, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461230

RESUMEN

BACKGROUND: Pectus excavatum, the most common chest wall deformity, is frequently treated with Nuss procedure. Here we will describe non-invasive procedure and analyze the variables associated vacuum bell therapy for patients with pectus excavatum. METHODS: Retrospective case-control study in a single center between July 2018 and February 2022, including patients with pectus excavatum treated with vacuum bell. Follow-up was continued to September 2022. The Haller index and Correction index was calculated before and after treatment to analysis the effectiveness of vacuum bell therapy. RESULTS: There were 98 patients enrolled in the treatment group, with 72 available for analysis, and the follow-up period ranged from 1.1 to 4.4 years (mean 3.3 years). When analyzing with the Haller Index, 18 patients (25.0%) showed excellent correction, 13 patients (18.1%) achieved good correction, and 4 patients (5.6%) had fair correction. The remaining patients had a poor outcome. Characteristics predicting a non-poor prognosis included initial age ≤ 11 years (OR = 3.94, p = 0.013) and patients with use over 24 consecutive months (OR = 3.95, p = 0.013). A total of 9 patients (12.5%) achieved a CI reduction below 10. Patients who started vacuum bell therapy at age > 11 had significantly less change compared to those who started at age ≤ 11 (P < 0.05). Complications included chest pain (5.6%), swollen skin (6.9%), chest tightness (1.4%) and erythema (15.3%). CONCLUSIONS: A certain percentage of patients with pectus excavatum can achieve excellent correction when treated with pectus excavatum therapy. Variables predicting better outcome including initial age ≤ 11 years both in HI and CI and vacuum bell use over 24 consecutive months in HI. In summary, pectus excavatum is an emerging non-invasive therapy for pectus excavatum and will be widely performed in a certain group of patients.


Asunto(s)
Tórax en Embudo , Pared Torácica , Humanos , Niño , Tórax en Embudo/terapia , Estudios Retrospectivos , Estudios de Casos y Controles , Vacio
20.
Genes Dev ; 30(9): 1086-100, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27125670

RESUMEN

Cytosolic RNA/DNA sensing elicits primary defense against viral pathogens. Interferon regulatory factor 3 (IRF3), a key signal mediator/transcriptional factor of the antiviral-sensing pathway, is indispensible for interferon production and antiviral defense. However, how the status of IRF3 activation is controlled remains elusive. Through a functional screen of the human kinome, we found that mammalian sterile 20-like kinase 1 (Mst1), but not Mst2, profoundly inhibited cytosolic nucleic acid sensing. Mst1 associated with IRF3 and directly phosphorylated IRF3 at Thr75 and Thr253. This Mst1-mediated phosphorylation abolished activated IRF3 homodimerization, its occupancy on chromatin, and subsequent IRF3-mediated transcriptional responses. In addition, Mst1 also impeded virus-induced activation of TANK-binding kinase 1 (TBK1), further attenuating IRF3 activation. As a result, Mst1 depletion or ablation enabled an enhanced antiviral response and defense in cells and mice. Therefore, the identification of Mst1 as a novel physiological negative regulator of IRF3 activation provides mechanistic insights into innate antiviral defense and potential antiviral prevention strategies.


Asunto(s)
Citosol/inmunología , Inmunidad Innata/genética , Factor 3 Regulador del Interferón/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Infecciones por Rhabdoviridae/enzimología , Infecciones por Rhabdoviridae/inmunología , Animales , Línea Celular , Activación Enzimática/genética , Células HEK293 , Humanos , Factor 3 Regulador del Interferón/genética , Ratones , Ratones Endogámicos C57BL , Fosforilación , Unión Proteica , Serina-Treonina Quinasa 3 , Vesiculovirus/inmunología , Pez Cebra/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA