Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Funct Integr Genomics ; 23(4): 328, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37907630

RESUMEN

The precise biological function of Interleukin-1 receptor 8 (IL-1R8) in diffuse large B-cell lymphoma (DLBCL) is still not well understood. Our goal is to decipher the profile of IL-1R8 expression status in DLBCL and to explore how IL-1R8 is involved in DLBCL progression. Utilizing a tissue microarray consisting of 70 samples of DLBCL tumors alongside 15 samples of tonsillitis, our investigation revealed a parallel expression profile of IL-1R8 between the tumor tissues and tonsillitis samples (p > 0.05). Nevertheless, an intriguing association emerged, as heightened expression of IL-1R8 correlated significantly with unfavorable survival outcomes in patients with DLBCL (p < 0.05). The status of IL-1R8 expression did not directly regulate proliferation (p > 0.05) and apoptosis (p > 0.05) in DLBCL cells via CCK8 and apoptotic assays. Subsequent chemotaxis analysis indicated that natural killer (NK) cell recruitment could be suppressed by IL-1R8 signaling in DLBCL, at least partially through CXCL1 inhibition (p < 0.05). The status of IL-1R8 expression in tumor tissues exhibited a negative correlation with the density of CD57+ NK cell infiltration (p < 0.05), while it did not demonstrate a significant association with CD3+ T cells (p > 0.05), CD68+ macrophages (p > 0.05), or S-100+ dendritic cells (p > 0.05). In line with this observation, elevated levels of NK cell infiltration demonstrated a significant positive correlation with improved overall survival (OS) among patients diagnosed with DLBCL (p < 0.05). Our data suggests the immuno-regulating potential of IL-1R8 through NK cell recruitment in DLBCL, providing novel insights into future immuno-modulating therapies.


Asunto(s)
Linfoma de Células B Grandes Difuso , Tonsilitis , Humanos , Células Asesinas Naturales/patología , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , Macrófagos/metabolismo , Transducción de Señal , Tonsilitis/metabolismo , Tonsilitis/patología
2.
Neurochem Res ; 48(3): 781-790, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36331667

RESUMEN

Neuropathic pain (NP) is a type of chronic pain affecting 6-8% of human health as no effective drug exists. The purinergic 2X4 receptor (P2X4R) is involved in NP. Neohesperidin (NH) is a dihydroflavonoside compound, which has anti-inflammatory and antioxidative properties. This study aimed to investigate whether NH has an effect on P2X4R-mediated NP induced by chronic constriction injury (CCI) of the sciatic nerve in rats. In this study, the CCI rat model was established to observe the changes of pain behaviors, P2X4R, and satellite glial cells (SGCs) activation in dorsal root ganglion (DRG) after NH treatment by using RT-PCR, immunofluorescence double labeling and Western blotting. Our results showed CCI rats had mechanical and thermal hyperalgesia with an increased level of P2X4R. Furthermore, SGCs were activated as indicated by increased expression of glial fibrillary acidic protein and increased tumor necrosis factor-alpha receptor 1and interleukin-1ß. In addition, phosphorylated extracellular regulated protein kinases and interferon regulatory factor 5 in CCI rats increased. After NH treatment in CCI rats, the levels of above protein decreased, and the pain reduced. Overall, NH can markedly alleviate NP by reducing P2X4R expression and SGCs activation in DRG.


Asunto(s)
Neuralgia , Receptores Purinérgicos P2X4 , Ratas , Humanos , Animales , Ratas Sprague-Dawley , Receptores Purinérgicos P2X4/metabolismo , Neuroglía/metabolismo , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Ganglios Espinales/metabolismo
3.
Phytopathology ; 113(11): 2073-2082, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37414408

RESUMEN

Xanthomonas translucens pv. cerealis causes bacterial leaf streak disease on small grain cereals. Type II and III secretion systems (T2SS and T3SS) play a pivotal role in the pathogenicity of the bacterium, while no data are available on the transcriptomic profile of wheat cultivars infected with either wild type (WT) or mutants of the pathogen. In this study, WT, TAL-effector mutants, and T2SS/T3SS mutants of X. translucens pv. cerealis strain NXtc01 were evaluated for their effect on the transcriptomic profile of two wheat cultivars, 'Chinese Spring' and 'Yangmai-158', using Illumina RNA-sequencing technology. RNA-Seq data showed that the number of differentially expressed genes (DEGs) was higher in Yangmai-158 than in Chinese Spring, suggesting higher susceptibility of Yangmai-158 to the pathogen. In T2SS, most suppressed DEGs were related to transferase, synthase, oxidase, WRKY, and bHLH transcription factors. The gspD mutants showed significantly decreased disease development in wheat, suggesting an active contribution of T2SS in virulence. Moreover, the gspD mutant restored full virulence and its multiplication in planta by addition of gspD in trans. In the T3SS-deficient strain, downregulated DEGs were associated with cytochrome, peroxidases, kinases, phosphatases, WRKY, and ethylene-responsive transcription factors. In contrast, upregulated DEGs were trypsin inhibitors, cell number regulators, and calcium transporter. Transcriptomic analyses coupled with quantitative real-time-PCR indicated that some genes are upregulated in Δtal1/Δtal2 compared with the tal-free strain, but no direct interaction was observed. These results provide novel insight into wheat transcriptomes in response to X. translucens infection and pave the way for understanding host-pathogen interactions.


Asunto(s)
Triticum , Xanthomonas , Triticum/genética , Triticum/microbiología , Transcriptoma , Enfermedades de las Plantas/microbiología , Xanthomonas/genética , Proteínas Bacterianas/genética
4.
J Integr Plant Biol ; 64(10): 1994-2008, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35972796

RESUMEN

Plant stomata close rapidly in response to a rise in the plant hormone abscisic acid (ABA) or salicylic acid (SA) and after recognition of pathogen-associated molecular patterns (PAMPs). Stomatal closure is the result of vacuolar convolution, ion efflux, and changes in turgor pressure in guard cells. Phytopathogenic bacteria secrete type III effectors (T3Es) that interfere with plant defense mechanisms, causing severe plant disease symptoms. Here, we show that the virulence and infection of Xanthomonas oryzae pv. oryzicola (Xoc), which is the causal agent of rice bacterial leaf streak disease, drastically increased in transgenic rice (Oryza sativa L.) plants overexpressing the Xoc T3E gene XopAP, which encodes a protein annotated as a lipase. We discovered that XopAP binds to phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2 ), a membrane phospholipid that functions in pH control in lysosomes, membrane dynamics, and protein trafficking. XopAP inhibited the acidification of vacuoles by competing with vacuolar H+ -pyrophosphatase (V-PPase) for binding to PtdIns(3,5)P2 , leading to stomatal opening. Transgenic rice overexpressing XopAP also showed inhibition of stomatal closure when challenged by Xoc infection and treatment with the PAMP flg22. Moreover, XopAP suppressed flg22-induced gene expression, reactive oxygen species burst and callose deposition in host plants, demonstrating that XopAP subverts PAMP-triggered immunity during Xoc infection. Taken together, these findings demonstrate that XopAP overcomes stomatal immunity in plants by binding to lipids.


Asunto(s)
Oryza , Xanthomonas , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Bacterianas/metabolismo , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Ácido Salicílico/metabolismo , Pirofosfatasa Inorgánica/metabolismo , Concentración de Iones de Hidrógeno , Fosfatidilinositoles/metabolismo , Lipasa/metabolismo , Fosfolípidos/metabolismo
5.
J Exp Bot ; 72(8): 3249-3262, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33544818

RESUMEN

Xa1-mediated resistance to rice bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is triggered by transcription activator-like effectors (TALEs) and suppressed by interfering TALEs (iTALEs). TALEs interact with the rice transcription factor OsTFIIAγ1 or OsTFIIAγ5 (Xa5) to activate expression of target resistance and/or susceptibility genes. However, it is not clear whether OsTFIIAγ is involved in TALE-triggered and iTALE-suppressed Xa1-mediated resistance. In this study, genome-edited mutations in OsTFIIAγ5 or OsTFIIAγ1 of Xa1-containing rice 'IRBB1' and Xa1-transgenic plants of xa5-containing rice 'IRBB5' did not impair the activation or suppression of Xa1-mediated resistance. Correspondingly, the expression pattern of Xa1 in mutated OsTFIIAγ5 and OsTFIIAγ1 rice lines and 'IRBB1' rice was similar. In contrast, the expression of OsSWEET11 was repressed in rice lines mutated in OsTFIIAγ5 and OsTFIIAγ1. Bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation assays showed that both TALE PthXo1 and iTALE Tal3a interacted with OsTFIIAγ1 and OsTFIIAγ5 in plant nuclei. These results indicated that TALE-triggered and iTALE-suppressed Xa1-mediated resistance to bacterial blight is independent of OsTFIIAγ1 or OsTFIIAγ5 in rice, and suggest that an unknown factor is potentially involved in the interaction of Xa1, TALEs and iTALEs.


Asunto(s)
Resistencia a la Enfermedad , Oryza , Enfermedades de las Plantas/microbiología , Factores de Transcripción , Xanthomonas , Resistencia a la Enfermedad/genética , Oryza/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas , Plantas Modificadas Genéticamente , Factores de Transcripción/genética
6.
BMC Microbiol ; 20(1): 91, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32293266

RESUMEN

BACKGROUND: Bacterial blight of cotton (BBC), which is caused by the bacterium Xanthomonas citri pv. malvacearum (Xcm), is a destructive disease in cotton. Transcription activator-like effectors (TALEs), encoded by tal-genes, play critical roles in the pathogenesis of xanthomonads. Characterized strains of cotton pathogenic Xcm harbor 8-12 different tal genes and only one of them is functionally decoded. Further identification of novel tal genes in Xcm strains with virulence contributions are prerequisite to decipher the Xcm-cotton interactions. RESULTS: In this study, we identified six tal genes in Xss-V2-18, a highly-virulent strain of Xcm from China, and assessed their role in BBC. RFLP-based Southern hybridization assays indicated that Xss-V2-18 harbors the six tal genes on a plasmid. The plasmid-encoded tal genes were isolated by cloning BamHI fragments and screening clones by colony hybridization. The tal genes were sequenced by inserting a Tn5 transposon in the DNA encoding the central repeat region (CRR) of each tal gene. Xcm TALome evolutionary relationship based on TALEs CRR revealed relatedness of Xss-V2-18 to MSCT1 and MS14003 from the United States. However, Tal2 of Xss-V2-18 differs at two repeat variable diresidues (RVDs) from Tal6 and Tal26 in MSCT1 and MS14003, respectively, inferred functional dissimilarity. The suicide vector pKMS1 was then used to construct tal deletion mutants in Xcm Xss-V2-18. The mutants were evaluated for pathogenicity in cotton based on symptomology and growth in planta. Four mutants showed attenuated virulence and all contained mutations in tal2. One tal2 mutant designated M2 was further investigated in complementation assays. When tal2 was introduced into Xcm M2 and expressed in trans, the mutant was complemented for both symptoms and growth in planta, thus indicating that tal2 functions as a virulence factor in Xcm Xss-V2-18. CONCLUSIONS: Overall, the results demonstrated that Tal2 is a major pathogenicity factor in Xcm strain Xss-V2-18 that contributes significantly in BBC. This study provides a foundation for future efforts aimed at identifying susceptibility genes in cotton that are targeted by Tal2.


Asunto(s)
Gossypium/microbiología , Análisis de Secuencia de ADN/métodos , Efectores Tipo Activadores de la Transcripción/genética , Xanthomonas/patogenicidad , Proteínas Bacterianas/genética , China , Elementos Transponibles de ADN , Gossypium/crecimiento & desarrollo , Mutación INDEL , Filogenia , Enfermedades de las Plantas/microbiología , Plásmidos/genética , Polimorfismo de Longitud del Fragmento de Restricción , Factores de Virulencia/genética , Xanthomonas/genética
7.
Cancer Cell Int ; 20: 73, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32165863

RESUMEN

BACKGROUND: Chronic myelogenous leukemia (CML) is a clonal myeloproliferative neoplasm resulting from BCR-ABL-transformed hematopoietic stem cells. Previous research has implicated multifunctional proinflammatory cytokines in CML development. It has been reported that Sirtuin 1 (SIRT1) as well as ADP-ribosyltransferase and deacetylase may influence CML cell viability and inflammation. METHODS: This study was directed toward exploring the SIRT1-involved in the mechanism of lipopolysaccharide (LPS)-triggered inflammation in CML k562 cells. RESULTS: In our study, the LPS-induced inflammation in k562 cells was reflected by increases in levels of diverse inflammatory cytokines, including interleukin (IL)-10, IL-1ß, IL-6, interferon-γ, tumor necrosis factor (TNF)-α and TNF-ß. LPS also decreased SIRT1 expression and nuclear location in k562 cells. Furthermore, SIRT1 overexpression inhibited the release of the above mentioned cytokines in LPS-treated cells. We also determined that LPS stimulation could activate Toll-like receptor 4 (TLR4), the nuclear factor κ B (NFκB) subunit, and p65 and produce reactive oxygen species (ROS) in k562 cells. Nevertheless, SIRT1 overexpression decreased TLR4 expression, thereby repressing the phosphorylation of the NFκB subunit and p65 and decreasing ROS production. CONCLUSIONS: These findings suggest that SIRT1 is a latent therapeutic target for mitigating LPS-induced inflammation via the TLR4-NFκB-ROS signaling axis.

9.
Plant Dis ; 104(11): 2764-2767, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32897843

RESUMEN

Xanthomonas oryzae pv. oryzae is the causative agent of bacterial blight of rice and causes severe harvest loss and challenges to a stable food supply globally. In this study, a hypervirulent strain, LN4, compatible in rice varieties carrying Xa3, Xa4, xa13, and xa25 resistance genes, was used to generate DNA for nanopore sequencing. After assembly, the genome comprises a single chromosome of 5,012,583 bp, consisting of a total of 6,700 predicted coding sequences. Seventeen transcription activator-like effectors (TALEs) were encoded in the genome, of which two (Tal7 and Tal6c) were major TALEs. The approach and genome data provide information for the discovery of new virulence effectors and understanding of the virulence mechanism of TALEs in rice.


Asunto(s)
Oryza , Xanthomonas , Enfermedades de las Plantas , Efectores Tipo Activadores de la Transcripción , Xanthomonas/genética
10.
J Cell Physiol ; 234(3): 2756-2764, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30145789

RESUMEN

The upregulation of nociceptive ion channels expressed in dorsal root ganglia (DRG) contributes to the development and retaining of diabetic pain symptoms. The flavonoid quercetin (3,3',4',5,7-pentahydroxyflavone) is a component extracted from various fruits and vegetables and exerts anti-inflammatory, analgesic, anticarcinogenic, antiulcer, and antihypertensive effects. However, the exact mechanism underlying quercetin's analgesic action remains poorly understood. The aim of this study was to investigate the effects of quercetin on diabetic neuropathic pain related to the P2X4 receptor in the DRG of type 2 diabetic rat model. Our data showed that both mechanical withdrawal threshold and thermal withdrawal latency in diabetic rats treated with quercetin were higher compared with those in untreated diabetic rats. The expression levels of P2X4 messenger RNA and protein in the DRG of diabetic rats were increased compared with the control rats, while quercetin treatment significantly inhibited such enhanced P2X4 expression in diabetic rats. The satellite glial cells (SGCs) enwrap the neuronal soma in the DRG. Quercetin treatment also lowered the elevated coexpression of P2X4 and glial fibrillary acidic protein (a marker of SGCs) and decreased the upregulation of phosphorylated p38 mitogen-activated protein kinase (p38MAPK) in the DRG of diabetic rats. Quercetin significantly reduced the P2X4 agonist adenosine triphosphate-activated currents in HEK293 cells transfected with P2X4 receptors. Thus, our data demonstrate that quercetin may decrease the upregulation of the P2X4 receptor in DRG SGCs, and consequently inhibit P2X4 receptor-mediated p38MAPK activation to relieve the mechanical and thermal hyperalgesia in diabetic rats.


Asunto(s)
Neuropatías Diabéticas/tratamiento farmacológico , Ganglios Espinales/efectos de los fármacos , Quercetina/farmacología , Receptores Purinérgicos P2X4/efectos de los fármacos , Animales , Diabetes Mellitus Experimental/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Neuralgia/tratamiento farmacológico , Neuroglía/metabolismo , ARN Interferente Pequeño/metabolismo , Ratas Sprague-Dawley , Receptores Purinérgicos P2X4/metabolismo
11.
J Neurochem ; 151(5): 584-594, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31418825

RESUMEN

Pyroptosis is a type of programmed cell death, displaying caspase-1-dependent and pro-inflammatory features. Purinergic 2X4 (P2X4 ) receptor activation in response to high-adenosine triphosphate release can induce inflammation. Envelope glycoprotein 120 (gp120) of human immunodeficiency virus type 1 is considered one of the primary pathogens leading to neuronal injury. In this study, we investigated the possible role of P2X4 receptor activation in gp120-triggered pyroptosis in cultured satellite glial cells (SGCs) of rat dorsal root ganglia (DRG). MTS assay, TdT-mediated dUTP Nick-end labeling assay, real-time RT-PCR, and western blotting et al. methods were used. The results indicated that the expression of P2X4 receptor in SGCs of DRG was up-regulated upon cultured with gp120 for 24 h. The highest decrease in viability of SGCs due to gp120 treatment was accompanied by marked increases of positive pyroptosis cells and cellular lactate dehydrogenase release, elevated levels of interleukin-1ß, interleukin-18, active caspase-1 and NOD-like receptor family, pyrin domain containing 1, and enhanced phosphorylation of p38MAPK. These abnormal changes because of gp120 were significantly inhibited and cell viability was markedly improved when SGCs of DRG were treated with short hairpin RNAs targeting P2X4 receptor. Our data suggest that silencing of P2X4 receptor may act effectively against gp120-induced pyroptosis mediated by the activation of NOD-like receptor family, pyrin domain containing 1 inflammasome and caspase-1 signaling in SGCs of DRG.


Asunto(s)
Ganglios Espinales/metabolismo , Proteína gp120 de Envoltorio del VIH/toxicidad , Piroptosis/fisiología , Receptores Purinérgicos P2X4/metabolismo , Transducción de Señal/fisiología , Animales , Células Cultivadas , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/patología , Masculino , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Piroptosis/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
12.
Int J Neurosci ; 129(8): 784-793, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30621504

RESUMEN

Aim: This study investigated whether the neuronal P2X3 receptor in rat dorsal root ganglia (DRG) mediated the effects of hesperidin on neuropathic pain. Materials and methods: The chronic constriction injury (CCI) model was used as a model of neuropathic pain. The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured. The mRNA and protein expression levels were assayed by real-time RT-PCR and Western blotting. Results: The results showed that mechanical and thermal hyperalgesia in the CCI rats were increased as compared to those in the sham group. The expression levels of P2X3 mRNA and protein in CCI rats were higher than those in the sham group. Dual-labelling immunofluorescence showed that the elevated P2X3 receptor was co-expressed with the neuronal marker NeuN in the DRG of CCI rats. Hesperidin treatment decreased both the mechanical and thermal hyperalgesia, and upregulated P2X3 expression in the CCI rats. Hesperidin treatment also reduced the ERK1/2 phosphorylation in the DRG of CCI rats. Moreover, hesperidin inhibited the P2X3 agonist ATP-induced currents in HEK293 cells transfected with the P2X3 plasmid. Therefore, hesperidin treatment could reverse the elevated expression of neuronal P2X3 receptor and reduce the activation of ERK1/2 in the DRG of CCI rats. Conclusions: Our findings suggested that hesperidin inhibited the nociceptive transmission mediated by the P2X3 receptor in neurons of DRG, and thus, relieved the mechanical and thermal hyperalgesia in CCI rats.


Asunto(s)
Ganglios Espinales , Hesperidina/farmacología , Hiperalgesia , Neuralgia , Nocicepción/efectos de los fármacos , Receptores Purinérgicos P2X3 , Animales , Modelos Animales de Enfermedad , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Células HEK293 , Humanos , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Masculino , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Purinérgicos P2X3/efectos de los fármacos , Receptores Purinérgicos P2X3/metabolismo
13.
Int J Mol Sci ; 20(22)2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31718028

RESUMEN

Chinese kale (Brassica oleracea var. chinensis Lei) is an important vegetable crop in South China, valued for its nutritional content and taste. Nonetheless, the thermal tolerance of Chinese kale still needs improvement. Molecular characterization of Chinese kale's heat stress response could provide a timely solution for developing a thermally tolerant Chinese kale variety. Here, we report the cloning of multi-protein bridging factor (MBF) 1c from Chinese kale (BocMBF1c), an ortholog to the key heat stress responsive gene MBF1c. Phylogenetic analysis showed that BocMBF1c is highly similar to the stress-response transcriptional coactivator MBF1c from Arabidopsis thaliana (AtMBF1c), and the BocMBF1c coding region conserves MBF1 and helix-turn-helix (HTH) domains. Moreover, the promoter region of BocMBF1c contains three heat shock elements (HSEs) and, thus, is highly responsive to heat treatment. This was verified in Nicotiana benthamiana leaf tissue using a green fluorescent protein (GFP) reporter. In addition, the expression of BocMBF1c can be induced by various abiotic stresses in Chinese kale which indicates the involvement of stress responses. The BocMBF1c-eGFP (enhanced green fluorescent protein) chimeric protein quickly translocated into the nucleus under high temperature treatment in Nicotiana benthamiana leaf tissue. Overexpression of BocMBF1c in Arabidopsis thaliana results in a larger size and enhanced thermal tolerance compared with the wild type. Our results provide valuable insight for the role of BocMBF1c during heat stress in Chinese kale.


Asunto(s)
Brassica/genética , Proteínas de Plantas/genética , Termotolerancia , Transactivadores/genética , Transporte Activo de Núcleo Celular , Brassica/metabolismo , Núcleo Celular/metabolismo , Clonación Molecular , Secuencia Conservada , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Dominios Proteicos , Nicotiana/genética , Transactivadores/química , Transactivadores/metabolismo , Transgenes
14.
J Cell Physiol ; 233(4): 3375-3383, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28949406

RESUMEN

Superior cervical ganglia (SCG) innervate the myocardium and participate in sympathoexcitatory transmission. P2Y12 receptor is expressed in satellite glial cells (SGCs). This study seeks to clarify whether the P2Y12 receptor is involved in the sympathoexcitation reflex after myocardial ischemia (MI). MI model was induced by occlusion of the left coronary artery. P2Y12 were assayed by real time PCR and Western blotting. Our results showed that expression levels of P2Y12 mRNA and protein were significantly higher in the MI group than in the sham group. Administration of P2Y12 short hairpin RNA (shRNA) caused downregulation of the P2Y12 receptor in the SCG. In MI rats plus P2Y12 shRNA treatment group, the abnormal changes in diastolic blood pressure (DBP), systolic blood pressure (SBP), heart rate (HR), electrocardiograms (ECGs), and cardiac tissue structures were alleviated. When the treatment of P2Y12 shRNA in MI rats, upregulated co-expression values of P2Y12 and glial fibrillary acidic protein (GFAP), the upregulation of tumor necrosis factor α (TNF-α) and phosphorylated P38 mitogen activated protein kinase (p-P38 MAPK) in the SCG were decreased. Downregulation of the P2Y12 receptor in the SCG after MI may improve cardiac function by alleviating the sympathoexcitatory reflex.


Asunto(s)
Isquemia Miocárdica/metabolismo , Miocardio/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Reflejo/fisiología , Animales , Presión Sanguínea/fisiología , Regulación hacia Abajo/fisiología , Corazón/fisiología , Frecuencia Cardíaca/fisiología , Isquemia Miocárdica/patología , Ratas Sprague-Dawley
15.
J Cell Physiol ; 233(12): 9620-9628, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29943819

RESUMEN

Diabetic neuropathic pain is a common complication of type 2 diabetes mellitus (DM). Activation of satellite glial cells (SGCs) in the dorsal root ganglia (DRG) plays a crucial role in neuropathic pain through the release of proinflammatory cytokines. The P2Y12 receptor is expressed in SGCs of the DRG. In this study, our aim was to investigate the role of the P2Y12 receptor on the pathological changes in diabetic neuropathic pain. The present study showed that diabetic neuropathic pain increased mechanical and thermal hyperalgesia in type 2 DM model rats. The results showed that the expression levels of P2Y12 messenger RNA (mRNA) and protein in DRG SGCs were increased in DM model rats compared with control rats. Glial fibrillary acidic protein (GFAP) and interleukin-1ß (IL-1ß) expression levels in the DRG were increased in DM rats. Upregulation of GFAP is a marker of SGC activation. Targeting the P2Y12 receptor by short hairpin RNA (shRNA) decreased the upregulated expression of P2Y12 mRNA and protein, coexpression of P2Y12 and GFAP, the expression of GFAP, IL-1ß, and tumor necrosis factor-receptor 1 in the DRG of DM rats, and relieved mechanical and thermal hyperalgesia in DM rats. After treatment with the P2Y12 receptor shRNA, the enhancing integrated OPTICAL density (IOD) ratios of p-P38 MAPK to P38 mitogen activated protein kinase (MAPK) in the DM rats treated with P2Y12 shRNA were significantly lower than that in the untreated DM rats. Therefore, P2Y12 shRNA treatment decreased SGC activation to relieve mechanical and thermal hyperalgesia in DM rats.


Asunto(s)
Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/terapia , Neuropatías Diabéticas/terapia , Neuralgia/terapia , Neuroglía/metabolismo , ARN Interferente Pequeño/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Animales , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/patología , Neuropatías Diabéticas/complicaciones , Neuropatías Diabéticas/patología , Activación Enzimática , Ganglios Espinales/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Interleucina-1beta/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Neuralgia/complicaciones , Neuralgia/patología , Ratas Sprague-Dawley , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Regulación hacia Arriba/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
16.
Purinergic Signal ; 14(1): 47-58, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29159762

RESUMEN

The direct neurotoxicity of HIV and neurotoxicity of combination antiretroviral therapy medications both contribute to the development of neuropathic pain. Activation of satellite glial cells (SGCs) in the dorsal root ganglia (DRG) plays a crucial role in mechanical and thermal hyperalgesia. The P2Y12 receptor expressed in SGCs of the DRG is involved in pain transmission. In this study, we explored the role of the P2Y12 receptor in neuropathic pain induced by HIV envelope glycoprotein 120 (gp120) combined with ddC (2',3'-dideoxycytidine). A rat model of gp120+ddC-induced neuropathic pain was used. Peripheral nerve exposure to HIV-gp120+ddC increased mechanical and thermal hyperalgesia in gp120+ddC-treated model rats. The gp120+ddC treatment increased expression of P2Y12 receptor mRNA and protein in DRG SGCs. In primary cultured DRG SGCs treated with gp120+ddC, the levels of [Ca2+]i activated by the P2Y12 receptor agonist 2-(Methylthio) adenosine 5'-diphosphate trisodium salt (2-MeSADP) were significantly increased. P2Y12 receptor shRNA treatment inhibited 2-MeSADP-induced [Ca2+]i in primary cultured DRG SGCs treated with gp120+ddC. Intrathecal treatment with a shRNA against P2Y12 receptor in DRG SGCs reduced the release of pro-inflammatory cytokines, decreased phosphorylation of p38 MAPK in the DRG of gp120+ddC-treated rats. Thus, downregulating the P2Y12 receptor relieved mechanical and thermal hyperalgesia in gp120+ddC-treated rats.


Asunto(s)
Proteína gp120 de Envoltorio del VIH , Neuralgia/metabolismo , Neuroglía/metabolismo , Receptores Purinérgicos P2/metabolismo , Zalcitabina/toxicidad , Animales , Fármacos Anti-VIH/toxicidad , Ganglios Espinales/metabolismo , Infecciones por VIH/complicaciones , Hiperalgesia/metabolismo , Hiperalgesia/virología , Masculino , Neuralgia/etiología , Ratas , Ratas Sprague-Dawley , Receptores Purinérgicos P2Y12 , Regulación hacia Arriba
17.
Mol Pain ; 13: 1744806917707667, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28554250

RESUMEN

Background Chronic pain is a common symptom in human immunodeficiency virus (HIV)-1 infection/acquired immunodeficiency syndrome patients. The literature shows that the HIV envelope glycoprotein 120 (gp120) can directly cause hyperalgesia by stimulating primary sensory afferent nerves. The P2X7 receptor in the dorsal root ganglia (DRG) is closely related to neuropathic and inflammatory pain. In this study, we aimed to explore the effect of resveratrol (RES) on gp120-induced neuropathic pain that is mediated by the P2X7 receptor in the rat DRG. Results Mechanical hyperalgesia in rats treated with gp120 was increased compared with that in the sham group. The P2X7 expression levels in rats treated with gp120 were higher than those in the sham group. Co-localization of the P2X7 receptor and glial fibrillary acidic protein (GFAP, a marker of satellite glial cells [SGCs]) in the DRG SGCs of the gp120 group exhibited more intense staining than that of the sham group. RES decreased the mechanical hyperalgesia and P2X7 expression levels in gp120 treatment rats. Co-localization of the P2X7 receptor and GFAP in the gp120+ RES group was significantly decreased compared to the gp120 group. RES decreased the IL-1ß and TNF-α receptor (R) expression levels and ERK1/2 phosphorylation levels as well as increased IL-10 expression in the DRG of gp120-treated rats. Whole cell clamping demonstrated that RES significantly inhibited adenosine triphosphate-activated currents in HEK293 cells that were transfected with the P2X7 plasmid. Conclusions RES relieved mechanical hyperalgesia in gp120-treated rats by inhibiting the P2X7 receptor.


Asunto(s)
Proteína gp120 de Envoltorio del VIH/farmacología , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Receptores Purinérgicos P2X7/metabolismo , Estilbenos/uso terapéutico , Animales , Western Blotting , Electrofisiología , Células HEK293 , Humanos , Interleucina-10 , Masculino , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Resveratrol
18.
J Neurosci Res ; 95(8): 1690-1699, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27991686

RESUMEN

Cardiac autonomic neuropathy in Type 2 diabetes (T2D) is often a devastating complication. Long non-coding RNAs (lncRNAs) have important effects on both normal development and disease pathogenesis. In this study, we explored the expression profiles of some lncRNAs involved in inflammation which may be co-expressed with messenger RNA (mRNA) in superior cervical and stellate ganglia after type 2 diabetic injuries. Total RNA isolated from 10 pairs of superior cervical and stellate ganglia in diabetic and normal male rats was hybridized to lncRNA arrays for detections. Pathway analysis indicated that the most significant gene ontology (GO) processes that were upregulated in diabetes were associated with immune response, cell migration, defense response, taxis, and chemotaxis. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway revealed that most of the target genes of the lncRNAs were located in cytokine-cytokine receptor interactions, the chemokine signaling pathway and cell adhesion molecules, which were involved in T2D. Gene co-expression network construction showed that the co-expression network in the experimental rats consisted of 268 regulation edges among 105 lncRNAs and 11 mRNAs. Our studies demonstrated the co-expression profile of lncRNAs and mRNAs in diabetic cardiac autonomic ganglia, suggesting possible roles for multiple lncRNAs as potential targets for the development of therapeutic strategies or biomarkers for diabetic cardiac autonomic neuropathy. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Neuropatías Diabéticas/metabolismo , Neuropatías Diabéticas/patología , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , Ganglio Cervical Superior/metabolismo , Animales , Presión Sanguínea/fisiología , Colesterol/metabolismo , Diabetes Mellitus Experimental , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Frecuencia Cardíaca/fisiología , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Largo no Codificante/genética , Ratas , Ratas Sprague-Dawley , Ganglio Cervical Superior/patología
19.
Purinergic Signal ; 13(4): 559-568, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28840511

RESUMEN

Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes mellitus (DM). More than 90% of all cases of DM belong to type 2 diabetes mellitus (T2DM). Emodin is the main active component of Radix et rhizoma rhei and has anti-bacterial, anti-viral, anti-ulcerogenic, anti-inflammatory, and anti-cancer effects. Nanoparticle encapsulation of drugs is beneficial for drug targeting and bioavailability as well as for lowering drug toxicity side effects. The aim of this study was to investigate the effects of nanoparticle-encapsulated emodin (nano emodin) on diabetic neuropathic pain (DNP) mediated by the Purin 2X3 (P2X3) receptor in the dorsal root ganglia (DRG). Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) values in T2DM rats were lower than those of control rats. MWT and TWL in T2DM rats treated with nano emodin were higher compared with those in T2DM rats. Expression levels of P2X3 protein and messenger RNA (mRNA) in the DRG of T2DM rats were higher than those of controls, while levels in T2DM rats treated with nano emodin were significantly lower than those of the T2DM rats. Phosphorylation and activation of ERK1/2 in the T2DM DRG were decreased by nano emodin treatment. Nano emodin significantly inhibited currents activated by the P2X3 agonist α,ß-meATP in HEK293 cells transfected with the P2X3 receptor. Therefore, nano emodin treatment may relieve DNP by decreasing excitatory transmission mediated by the DRG P2X3 receptor in T2DM rats.


Asunto(s)
Neuropatías Diabéticas/metabolismo , Emodina/administración & dosificación , Ganglios Espinales/efectos de los fármacos , Nanoconjugados , Receptores Purinérgicos P2X3/metabolismo , Animales , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ganglios Espinales/metabolismo , Células HEK293 , Humanos , Masculino , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley
20.
Purinergic Signal ; 13(2): 227-235, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28054206

RESUMEN

Type 2 diabetes mellitus (T2DM) accounts for more than 90% of all cases of diabetes mellitus (DM). Diabetic neuropathic pain (DNP) is a common complication of T2DM. Sinomenine is a natural bioactive component extracted from the Sinomenium acutum and has anti-inflammatory effects. The aim of our study was to investigate the effects of sinomenine on DNP mediated by the P2X3 receptor in dorsal root ganglia (DRG). The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) in T2DM rats were lower than those of control rats. MWT and TWL in T2DM rats treated with sinomenine were higher compared with those in T2DM rats. The expression levels of the P2X3 protein and mRNA in T2DM rat DRG were higher compared with those of the control, while those in T2DM rats treated with sinomenine were significantly lower compared with those of the T2DM rats. Sinomenine significantly inhibited P2X3 agonist ATP-activated currents in HEK293 cells transfected with the P2X3 receptor. Sinomenine decreased the phosphorylation and activation of P38MAPK in T2DM DRG. Therefore, sinomenine treatment may suppress the up-regulated expression and activation of the P2X3 receptor and relieve the hyperalgesia potentiated by the activation of P38MAPK in T2DM rats.


Asunto(s)
Neuropatías Diabéticas , Morfinanos/farmacología , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X3/efectos de los fármacos , Animales , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2/complicaciones , Ganglios Espinales/efectos de los fármacos , Células HEK293 , Humanos , Hiperalgesia , Masculino , Umbral del Dolor/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA