RESUMEN
BACKGROUND: Flower buds of Anthurium andraeanum frequently cease to grow and abort during the early flowering stage, resulting in prolonged planting times and increased commercialization costs. Nevertheless, limited knowledge exists of the mechanism of flower development after initiation in A. andraeanum. RESULTS: In this study, the measurement of carbohydrate flow and intensity between leaves and flowers during different growth stages showed that tender leaves are strong sinks and their concomitant flowers are weak ones. This suggested that the tender leaves compete with their concomitant flower buds for carbohydrates during the early growth stages, potentially causing the abortion of the flower buds. The analysis of transcriptomic differentially expressed genes suggested that genes related to sucrose metabolism and auxin response play an important role during flower bud development. Particularly, co-expression network analysis found that AaSPL12 is a hub gene engaged in flower development by collaborating carbohydrate and auxin signals. Yeast Two Hybrid assays revealed that AaSPL12 can interact with AaARP, a protein that serves as an indicator of dormancy. Additionally, the application of exogenous IAA and sucrose can suppress the expression of AaARP, augment the transcriptional abundance of AaSPL12, and consequently expedite flower development in Anthurium andraeanum. CONCLUSIONS: Collectively, our findings indicated that the combination of auxin and sugar signals could potentially suppress the repression of AaARP protein to AaSPL12, thus advancing the development of flower buds in Anthurium andraeanum.
Asunto(s)
Araceae , Reproducción , Femenino , Embarazo , Humanos , Sacarosa , Araceae/genética , Flores/genética , Ácidos IndolacéticosRESUMEN
BACKGROUND: Castanopsis carlesii is a dominant tree species in subtropical evergreen broad-leaved forests and holds significant ecological value. It serves as an excellent timber tree species and raw material for cultivating edible fungi. Henry Chinquapin (Castanea henryi) wood is known for its hardness and resistance to water and moisture, making it an exceptional timber species. Additionally, its fruit has a sweet and fruity taste, making it a valuable food source. However, the mitogenomes of these species have not been previously reported. To gain a better understanding of them, this study successfully assembled high-quality mitogenomes of C. carlesii and Ca. henryi for the first time. RESULTS: Our research reveals that the mitochondrial DNA (mtDNA) of C. carlesii exhibits a unique multi-branched conformation, while Ca. henryi primarily exists in the form of two independent molecules that can be further divided into three independent molecules through one pair of long repetitive sequences. The size of the mitogenomes of C. carlesii and Ca. henryi are 592,702 bp and 379,929 bp respectively, which are currently the largest and smallest Fagaceae mitogenomes recorded thus far. The primary factor influencing mitogenome size is dispersed repeats. Comparison with published mitogenomes from closely related species highlights differences in size, gene loss patterns, codon usage preferences, repetitive sequences, as well as mitochondrial plastid DNA segments (MTPTs). CONCLUSIONS: Our study enhances the understanding of mitogenome structure and evolution in Fagaceae, laying a crucial foundation for future research on cell respiration, disease resistance, and other traits in this family.
Asunto(s)
ADN Mitocondrial , Fagaceae , Genoma Mitocondrial , Fagaceae/genética , ADN Mitocondrial/genética , Filogenia , Especificidad de la Especie , Tamaño del GenomaRESUMEN
Long terminal repeat retroelements (LTR-REs) have profound effects on DNA methylation and gene regulation. Despite the vast abundance of LTR-REs in the genome of Moso bamboo (Phyllostachys edulis), an industrial crop in underdeveloped countries, their precise implication of the LTR-RE mobility in stress response and development remains unknown. We investigated the RNA and DNA products of LTR-REs in Moso bamboo under various developmental stages and stressful conditions. Surprisingly, our analyses identified thousands of active LTR-REs, particularly those located near genes involved in stress response and developmental regulation. These genes adjacent to active LTR-REs exhibited an increased expression under stress and are associated with reduced DNA methylation that is likely affected by the induced LTR-REs. Moreover, the analyses of simultaneous mapping of insertions and DNA methylation showed that the LTR-REs effectively alter the epigenetic status of the genomic regions where they inserted, and concomitantly their transcriptional competence which might impact the stress resilience and growth of the host. Our work unveils the unusually strong LTR-RE mobility in Moso bamboo and its close association with (epi)genetic changes, which supports the co-evolution of the parasitic DNAs and host genome in attaining stress tolerance and developmental robustness.
RESUMEN
INTRODUCTION: Early gastric cancer with current Helicobacter pylori infection (HpC-EGC) is common, but it is still unclear whether H. pylori eradication therapy (Hp-ET) or endoscopic submucosal dissection (ESD) should be performed first. We evaluated Hp-ETs short-term effects on horizontal boundary delineations of HpC-EGC in ESD. METHODS: Prospectively enrolled HpC-EGC patients were randomly assigned to eradication or control groups. Operation scopes of HpC-EGC lesions were delineated with marking dots at 5 mm out of the endoscopic demarcation line by an independent endoscopist, unaware of eradication status, before formal circumferential incision. As representatives, precise delineation rate, the shortest distance of all marking dots to the pathological demarcation line in all slices of one intact resected specimen (Dmin), and negative marking dot specimen rate were examined. RESULTS: Twenty-three HpC-EGC patients (25 lesions) were allocated to eradication group and 26 patients (27 lesions) were allocated to the control group with similar eradication success rates and all were differentiated type. With improving background mucosa inflammation after Hp-ET and similar gastritis-like epithelium rates, 10 lesions (40.0%) in the eradication group were of precise delineation compared to control group with 2 lesions (7.4%) (relative risk = 5.40, 95% CI 1.31-22.28). Dmin of eradication and control groups were 4.17 ± 2.52 mm and 2.67 ± 2.30 mm (p = 0.029), accompanied by 4 (14.8%) and none (0.0%) specimens that exhibited positive marking dots (p = 0.11), respectively. CONCLUSION: For HpC-EGC patients, administrating eradication medication before ESD is beneficial for the precise delineation of lesions and reducing the risk of positive horizontal resection margins.
Asunto(s)
Resección Endoscópica de la Mucosa , Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/tratamiento farmacológico , Neoplasias Gástricas/cirugía , Neoplasias Gástricas/patología , Mucosa Gástrica/cirugía , Mucosa Gástrica/patologíaRESUMEN
BACKGROUND AND AIM: Pancreatic intraductal papillary mucinous neoplasm (IPMN) is one of the most common precancerous lesions of pancreatic carcinoma. Studies have found that the tumoral microbiome has an important influence on pancreatic carcinoma. However, the tumoral microbiome of IPMNs has rarely been explored. METHODS: Tumoral microbiome gene sequencing was carried out using 16 specimens of IPMN and 45 specimens of IPMN with associated invasive carcinoma (IPMN-IC) by 2bRAD sequencing for microbiome. The profile of the tumoral microbiome was summarized. Associations of the tumoral microbiome with disease grade, histological subtype, and prognosis were analyzed. RESULTS: A total of 598 species of microbes were identified, comprising 228 genera, 109 families, 60 orders, 29 classes, 14 phyla, and 2 kingdoms. The genus Pseudomonas was detected more frequently and had higher relative abundance in IPMN-ICs; Alcaligenes faecalis was detected with higher relative abundance in IPMNs. Bifidobacterium pseudolongum had a higher relative abundance in the IPMN-IC group, regardless of histological subtype. Moreover, among patients with IPMN-ICs, those with a high relative abundance of B. pseudolongum had better overall survival than those with a low relative abundance. Patients who were positive for Staphylococcus aureus or Mycolicibacillus koreensis had shorter survival. The presence of S. aureus was an independent risk factor for poor prognosis. CONCLUSIONS: There are enriching tumoral microbes in IPMN. The tumoral microbiome of IPMN is different from that of IPMN-IC.
Asunto(s)
Adenocarcinoma Mucinoso , Carcinoma Ductal Pancreático , Neoplasias Intraductales Pancreáticas , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/patología , Estudios Retrospectivos , Staphylococcus aureus , Adenocarcinoma Mucinoso/patología , Neoplasias Pancreáticas/patologíaRESUMEN
Translation elongation factor P, expressed by the efp gene, is a conserved protein closely related to bacterial virulence and environmental stress regulation responses, however, little is known about the efp gene expression regulations. Here, the strain of Staphylococcus aureus subsp. aureus NCTC 8325 was taken as the research object and cultured under different conditions, including different culture temperatures, pH, and antibiotics, to study the expression of the efp gene in S. aureus by qRT-PCR, the results showed that the expression of the efp gene is upregulated under high temperature (40 °C), acidic (pH 5.4) or alkaline (pH 9.4) culture conditions, but upregulated early and downregulated later under the conditions of 0.5 MIC antibiotics (chloramphenicol at the final concentration of 2 µg/mL and vancomycin at the final concentration of 0.25 µg/mL), indicating that the efp promoter in S. aureus is inducible. The efp promoter sequence and structure in S. aureus were predicted by bioinformatics methods, and the predicted promoter was validated by constructing a promoter-probe vector and a series of promoter mutants, the results showed that the efp promoter sequence in S. aureus, named Pro, located in 1,548,179-1,548,250 of the S. aureus genome (NC_007795.1), and the sequence of - 10 element is CCTTATAGT, - 35 element is TTTACT. The results above could lay a foundation for screening transcription factors involved in the expression of the efp gene and then exploring the transcriptional regulation mechanism of EF-P in S. aureus.
Asunto(s)
Factores de Elongación de Péptidos , Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/genética , Proteínas Bacterianas/metabolismo , Factores de Transcripción/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Regulación Bacteriana de la Expresión GénicaRESUMEN
OBJECTIVE: The clinical efficacy and safety of sorafenib in patients with advanced liver cancer (ALC) were evaluated based on transarterial chemoembolization (TACE). METHODS: 92 patients with ALC admitted to our hospital from May 2020 to August 2022 were randomly rolled into a control (Ctrl) group and an observation (Obs) group, with 46 patients in each. Patients in the Ctrl group received TACE treatment, while those in the Obs group received sorafenib molecular targeted therapy (SMTT) on the basis of the treatment strategy in the Ctrl group (400 mg/dose, twice daily, followed by a 4-week follow-up observation). Clinical efficacy, disease control rate (DCR), survival time (ST), immune indicators (CD3+, CD4+, CD4+/CD8+), and adverse reactions (ARs) (including mild fatigue, liver pain, hand-foot syndrome (HFS), diarrhea, and fever) were compared for patients in different groups after different treatments. RESULTS: the DCR in the Obs group (90%) was greatly higher to that in the Ctrl group (78%), showing an obvious difference (P < 0.05). The median ST in the Obs group was obviously longer and the median disease progression time (DPT) was shorter, exhibiting great differences with those in the Ctrl group (P < 0.05). Moreover, no great difference was observed in laboratory indicators between patients in various groups (P > 0.05). After treatment, the Obs group exhibited better levels in all indicators. Furthermore, the incidence of ARs in the Obs group was lower and exhibited a sharp difference with that in the Ctrl group (P < 0.05). CONCLUSION: SMTT had demonstrated good efficacy in patients with ALC, improving the DCR, enhancing the immune response of the body, and reducing the incidence of ARs, thereby promoting the disease outcome. Therefore, it was a treatment method worthy of promotion and application.
Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Quimioembolización Terapéutica , Neoplasias Hepáticas , Humanos , Sorafenib/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Antineoplásicos/efectos adversos , Quimioembolización Terapéutica/métodos , Niacinamida/efectos adversos , Compuestos de Fenilurea/efectos adversos , Resultado del Tratamiento , Terapia CombinadaRESUMEN
Achieving an equilibrium between exceptional oil absorption and remarkable elasticity has emerged as a formidable challenge for magnetic porous materials designed for oil absorption. Here, we propose an original, magnetic and superhydrophobic cellulose nanofibril (CNF) based aerogel system with a rope-ladder like skeleton by to greatly improve the issue. Within this system, CNF as the skeleton was combined with multiwalled carbon nanotubes (MWCNT)@Fe3O4 as the magnetic and enhanced component, both methyltrimethoxysilane (MTMS) and acetonitrile-extracted lignin (AEL) as the soft-hard associating constituents. The resultant CNF based aerogel shows a rope-ladder like pore structure to contribute to high elasticity and excellent oil absorption (28.34-61.09 g/g for various oils and organic solvents) under the synergistic effect of Fe3O4@MWCNT, AEL and MTMS, as well as good specific surface area (27.97 m2/g), low density (26.4 mg/cm3). Notably, despite the introduced considerable proportion (0.5 times of mass-CNF) of Fe3O4@MWCNT, the aerogel retained an impressive compression-decompression rate (88%) and the oil absorption efficiency of above 87% for various oils due to the soft-hard associating structure supported by both MTMS and AEL. This study provides a prospective strategy to balance between high elasticity and excellent oil absorption of CNF based aerogel doping inorganic particles.
Asunto(s)
Celulosa , Interacciones Hidrofóbicas e Hidrofílicas , Nanofibras , Celulosa/química , Nanofibras/química , Aceites/química , Geles/química , Nanotubos de Carbono/química , Elasticidad , PorosidadRESUMEN
Direct interspecies electron transfer (DIET) is essential for maintaining the function and stability of anaerobic microbial consortia. However, only limited natural DIET modes have been identified and DIET engineering remains highly challenging. In this study, an unnatural DIET between Shewanella oneidensis MR-1 (SO, electron donating partner) and Rhodopseudomonas palustris (RP, electron accepting partner) was artificially established by a facile living cell-cell click chemistry strategy. By introducing alkyne- or azide-modified monosaccharides onto the cell outer surface of the target species, precise covalent connections between different species in high proximity were realized through a fast click chemistry reaction. Remarkably, upon covalent connection, outer cell surface C-type cytochromes mediated DIET between SO and RP was achieved and identified, although this was never realized naturally. Moreover, this connection directly shifted the natural H2 mediated interspecies electron transfer (MIET) to DIET between SO and RP, which delivered superior interspecies electron exchange efficiency. Therefore, this work demonstrated a naturally unachievable DIET and an unprecedented MIET shift to DIET accomplished by cell-cell distance engineering, offering an efficient and versatile solution for DIET engineering, which extends our understanding of DIET and opens up new avenues for DIET exploration and applications.
Asunto(s)
Química Clic , Rhodopseudomonas , Shewanella , Transporte de Electrón , Shewanella/metabolismo , Shewanella/química , Rhodopseudomonas/metabolismo , Rhodopseudomonas/química , Azidas/química , Azidas/metabolismo , Alquinos/químicaRESUMEN
Members of the genus Shewanella are known for their versatile electron accepting routes, which allow them to couple decomposition of organic matter to reduction of various terminal electron acceptors for heterotrophic growth in diverse environments. Here, we report autotrophic growth of Shewanella oneidensis MR-1 with photoelectrons provided by illuminated biogenic CdS nanoparticles. This hybrid system enables photosynthetic oscillatory acetate production from CO2 for over five months, far exceeding other inorganic-biological hybrid system that can only sustain for hours or days. Biochemical, electrochemical and transcriptomic analyses reveal that the efficient electron uptake of S. oneidensis MR-1 from illuminated CdS nanoparticles supplies sufficient energy to stimulate the previously overlooked reductive glycine pathway for CO2 fixation. The continuous solar-to-chemical conversion is achieved by photon induced electric recycling in sulfur species. Overall, our findings demonstrate that this mineral-assisted photosynthesis, as a widely existing and unique model of light energy conversion, could support the sustained photoautotrophic growth of non-photosynthetic microorganisms in nutrient-lean environments and mediate the reversal of coupled carbon and sulfur cycling, consequently resulting in previously unknown environmental effects. In addition, the hybrid system provides a sustainable and flexible platform to develop a variety of solar products for carbon neutrality.
RESUMEN
Early detection and treatment of invasive carcinoma arising in association with intraductal papillary mucinous neoplasm (IPMN), which is biologically and (epi)genetically distinct from conventional pancreatic ductal adenocarcinoma, provide an opportunity to improve the prognosis of this lethal disease. Despite the successful application of programmed death (ligand) 1 (PD-[L]1)-blocking strategies in numerous cancers, the immune microenvironment of IPMN with associated invasive carcinoma remains elusive. Here, we investigated CD8+ T cells, CD68+ macrophages, PD-L1, and V-domain immunoglobulin suppressor of T-cell activation (VISTA) in 60 patients with IPMN with associated invasive carcinoma using immunohistochemistry, explored their correlations with clinicopathologic variables and prognosis, and compared them with those in 76 patients with IPMN without invasive carcinoma (60 low-grade and 16 high-grade lesions). Using antibodies against CD8, CD68, and VISTA, we evaluated tumor-infiltrating immune cells in 5 high-power fields (×400) and calculated the corresponding mean counts. PD-L1 with a combined positive score of ≥1 was regarded as positive, and VISTA expression on tumor cells (TCs) was deemed positive when ≥1% of TCs showed membranous/cytoplasmic staining. A reduction of CD8+ T cells and an increase of macrophages were observed during carcinogenesis. Positive PD-L1 combined positive score and VISTA expression on TCs were 13% and 11% in the intraductal component of IPMN with associated invasive carcinoma, 15% and 12% in the associated invasive carcinoma, and 6% and 4% in IPMN without an invasive carcinoma, respectively. Interestingly, the PD-L1 positivity rate was the highest in a subset of associated invasive carcinomas (predominantly gastric-type-derived) and was associated with higher counts of CD8+ T cells, macrophages, and VISTA+ immune cells. Accumulation of VISTA+ immune cells was observed in the intraductal component of IPMN with associated invasive carcinoma compared with that of low-grade IPMN, whereas in intestinal-type IPMN with associated invasive carcinoma, the number of these cells decreased during the transition from the intraductal component to the associated invasive carcinoma. Survival analysis revealed that a higher number of macrophages predicted poorer prognosis. In conclusion, our results might help in individualized immunotherapeutic strategies for these patients.
Asunto(s)
Adenocarcinoma Mucinoso , Carcinoma Ductal Pancreático , Neoplasias Intraductales Pancreáticas , Neoplasias Pancreáticas , Humanos , Antígeno B7-H1/análisis , Linfocitos T CD8-positivos/patología , Neoplasias Intraductales Pancreáticas/patología , Adenocarcinoma Mucinoso/patología , Neoplasias Pancreáticas/patología , Páncreas/metabolismo , Carcinoma Ductal Pancreático/patología , Invasividad Neoplásica/patología , Microambiente TumoralRESUMEN
Cadmium (Cd) contamination in paddy soil threatens rice growth and food safety, enriching manganese (Mn) in rice seedlings is expected to reduce Cd uptake by rice. The effects of 250 µM Mn-treated seedlings on reducing Cd uptake of four rice genotypes (WYJ21, ZJY1578, HHZ, and HLYSM) planted in 0.61 mg kg-1 Cd-contaminated soil, were studied through the hydroponic and pot experiments. The results showed that the ZJY1578 seedling had the highest Mn level (459 µg plant-1), followed by WYJ21 (309 µg plant-1), and less Mn accumulated in the other genotypes. The relative expression of OsNramp5 (natural resistance-associated macrophage protein) was reduced by 42.7 % in ZJY1578 but increased by 23.3 % in HLYSM. The expressions of OsIRT1 (iron-regulated transporter-like protein) were reduced by 24.0-56.0 % in the four genotypes, with the highest reduction in ZJY1578. Consequently, a greater reduction of Cd occurred in ZJY1578 than that in the other genotypes, i.e., the root and shoot Cd at the tillering were reduced by 27.8 % and 48.5 %, respectively. At the mature stage, total Cd amount and distribution in the shoot and brown rice were also greatly reduced in ZJY1578, but the inhibitory effects were weakened compared to the tillering stage. This study found various responses of Cd uptake and transporters to Mn-treated seedlings among rice genotypes, thus resulting in various Cd reductions. In the future, the microscopic transport processes of Cd within rice should be explored to deeply explain the genotypic variation.
Asunto(s)
Oryza , Plantones , Plantones/genética , Oryza/genética , Cadmio/toxicidad , Manganeso , Genotipo , SueloRESUMEN
This report describes the unprecedented electrooxidation of a solvent (e.g., DMF)-ligated B2 cat2 complex, whereby a solvent-stabilized boryl radical is formed via quasi-homolytic cleavage of the B-B bond in a DMF-ligated B2 cat2 radical cation. Cyclic voltammetry and density functional theory provide evidence to support this novel B-B bond activation strategy. Furthermore, a strategy for the electrochemical gem-diborylation of gem-bromides via paired electrolysis is developed for the first time, affording a range of versatile gem-diborylalkanes, which are widely used in synthetic society. Notably, this reaction approach is scalable, transition-metal-free, and requires no external activator.
RESUMEN
Due to the intrinsic inertness of alkanes, strong oxidative conditions are typically required to enable their C(sp3 )-H functionalization. Herein, a paired electrocatalysis strategy was developed by integrating oxidative catalysis with reductive catalysis in one cell without interference, in which earth-abundant iron and nickel are employed as the anodic and cathodic catalysts, respectively. This approach lowers the previously high oxidation potential required for alkane activation, enabling electrochemical alkane functionalization at the ultra-low oxidation potential of ≈0.25â V vs. Ag/AgCl under mild conditions. Structurally diverse alkenes, including challenging all-carbon tetrasubstituted olefins, can be accessed using readily available alkenyl electrophiles.
RESUMEN
OBJECTIVE: Most endoscopists routinely perform moderate or deep sedation for esophagogastroduodenoscopy (EGD). Considering that there is no consensus on the optimal sedation depth and it varies from country to country, our study aims to compare the effectiveness, cost and safety of these two sedation methods in the Chinese population. METHODS: This quasi-experimental study included a total of 556 eligible patients from July 2020 to June 2021, and they entered the moderate sedation group or deep sedation group based on their choices. Baseline information, scores of Patient Satisfaction with Sedation Instrument (PSSI) and Clinician Satisfaction with Sedation Instrument (CSSI), examination time, sedation time, recovery time, expenses before medicare reimbursement, hypoxaemia and hypotension were compared between the two groups. Propensity Score Matching (PSM) analysis was conducted to balance the confounding factors. RESULTS: After PSM, 470 patients were involved in the analysis, with 235 for each group. The moderate sedation was clearly superior to the deep sedation group in terms of PSSI score (98.00 ± 0.94 vs. 97.29 ± 1.26), CSSI score (98.00 ± 0.78 vs. 97.67 ± 1.30), sedation time (11.90 ± 2.04 min vs. 13.21 ± 2.75 min), recovery time (25.40 ± 3.77 min vs. 28.0 ± 4.85 min), expenses (433.04 ± 0.00 Yuan vs. 789.85 ± 0.21 Yuan), with all p < .001. Examination time was not significantly different between the two groups (p = .124). In addition, the moderate sedation group had a lower occurrence rate of hypoxaemia (0.36% vs. 3.27%, p = .010) and hypotension (17.44% vs. 44.00%, p < .001) compared to the deep sedation group. CONCLUSIONS: Moderate sedation presented better effectiveness and safety and lower cost, and thereby it should be recommended as a widely used sedation method in clinical practice in China. Trial registration: This trial was registered on http://www.chictr.org.cn/index.aspx (ChiCTR2000038050).
Asunto(s)
Sedación Profunda , Hipotensión , Propofol , Anciano , Sedación Consciente/métodos , Análisis Costo-Beneficio , Sedación Profunda/efectos adversos , Sedación Profunda/métodos , Endoscopía del Sistema Digestivo/efectos adversos , Endoscopía del Sistema Digestivo/métodos , Humanos , Hipnóticos y Sedantes/efectos adversos , Hipotensión/etiología , Hipoxia/etiología , Medicare , Estados UnidosRESUMEN
BACKGROUND: The use of cortical strut allograft has not been determined for Vancouver type B1 or C fracture. This study aimed to evaluate the short-term efficacy of locking compression plating with or without cortical strut allograft in managing these types of fractures. METHODS: We retrospectively assessed 32 patients (17 males, 15 females; 23-88 years, mean: 67.2 years) with Vancouver type B1 or C fractures. Seventeen patients (Group A; B1 fractures in 15 hips, C fractures in 2 hips) were treated with open reduction and internal fixation with locking compression plates (group A). The other 15 patients (Group B; B1 in 14 hips, C in 1 hip) were fixed by locking compression plating combined with cortical strut allografting (group B). The fracture healing rate, healing time, complications and function were compared between these two groups. RESULTS: The mean follow-up time was 32.4 months (12 to 66), and the overall fracture union rate of the 32 patients was 96.9%. Group B had a higher fracture union rate than Group A, but the difference was not statistically significant. Group A had one case of nonunion of type B1 fracture and one case of malunion; the mean time to fracture healing was 5.3 months (3 to 9). In group B, all patients reached bony union without malunion, with a mean time of fracture healing of 5.1 months (3 to 8). CONCLUSION: Treatment of Vancouver type B1 or C fractures by locking compression plating, with or without cortical strut allografting, resulted in similar union rates in these patients. This suggest that, the use of cortical strut allografting should be decided cautiously.
Asunto(s)
Artroplastia de Reemplazo de Cadera , Fracturas del Fémur , Prótesis de Cadera , Fracturas Periprotésicas , Aloinjertos , Placas Óseas , Femenino , Fracturas del Fémur/diagnóstico por imagen , Fracturas del Fémur/cirugía , Estudios de Seguimiento , Fijación Interna de Fracturas/efectos adversos , Curación de Fractura , Humanos , Masculino , Fracturas Periprotésicas/diagnóstico por imagen , Fracturas Periprotésicas/epidemiología , Fracturas Periprotésicas/etiología , Estudios Retrospectivos , Trasplante Homólogo , Resultado del TratamientoRESUMEN
Mucins,a family of heavily glycosylated proteins,present mainly in epithelial cells.They function as essential barriers for epithelium and play important roles in cellular physiological processes.Aberrant expression and glycosylation of mucins in gastric epithelium occur at pathological conditions,such as Helicobacter pylori infection,chronic atrophic gastritis,intestinal metastasis,dysplasia,and gastric cancer.This review addresses the major roles played by mucins and associated O-glycan structures in normal gastric epithelium.Further,we expound the alterations of expression patterns and glycan signatures of mucins at those pathological conditions.
Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patología , Glicosilación , Infecciones por Helicobacter/patología , Helicobacter pylori/metabolismo , Humanos , Mucinas/metabolismo , Neoplasias Gástricas/patologíaRESUMEN
BACKGROUND: LTR retrotransposons play a significant role in plant growth, genome evolution, and environmental stress response, but their regulatory response to heat stress remains unclear. We have investigated the activities of two LTR retrotransposons, PHRE1 and PHRE2, of moso bamboo (Phyllostachys edulis) in response to heat stress. RESULTS: The differential overexpression of PHRE1 and PHRE2 with or without CaMV35s promoter showed enhanced expression under heat stress in transgenic plants. The transcriptional activity studies showed an increase in transposition activity and copy number among moso bamboo wild type and Arabidopsis transgenic plants under heat stress. Comparison of promoter activity in transgenic plants indicated that 5'LTR promoter activity was higher than CaMV35s promoter. Additionally, yeast one-hybrid (Y1H) system and in planta biomolecular fluorescence complementation (BiFC) assay revealed interactions of heat-dependent transcription factors (TFs) with 5'LTR sequence and direct interactions of TFs with pol and gag. CONCLUSIONS: Our results conclude that the 5'LTR acts as a promoter and could regulate the LTR retrotransposons in moso bamboo under heat stress.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Poaceae/metabolismo , Retroelementos/genética , Secuencias Repetidas Terminales , Factores de Transcripción/metabolismo , Epigénesis Genética , Respuesta al Choque Térmico/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Poaceae/genética , Regiones Promotoras GenéticasRESUMEN
Perfluorooctanesulfonate (PFOS) as an accumulative emerging persistent organic pollutant in crops poses severe threats to human health. Lettuce varieties that accumulate a lower amount of PFOS (low-accumulating crop variety, LACV) have been identified, but the regarding mechanisms remain unsolved. Here, rhizospheric activation, uptake, translocation, and compartmentalization of PFOS in LACV were investigated in comparison with those of high-accumulating crop variety (HACV) in terms of rhizospheric forms, transporters, and subcellular distributions of PFOS. The enhanced PFOS desorption from the rhizosphere soils by dissolved organic matter from root exudates was observed with weaker effect in LACV than in HACV. PFOS root uptake was controlled by a transporter-mediated passive process in which low activities of aquaporins and rapid-type anion channels were corrected with low expression levels of PIPs (PIP1-1 and PIP2-2) and ALMTs (ALMT10 and ALMT13) genes in LACV roots. Higher PFOS proportions in root cell walls and trophoplasts caused lower root-to-shoot transport in LACV. The ability to cope with PFOS toxicity to shoot cells was poorer in LACV relative to HACV since PFOS proportions were higher in chloroplasts but lower in vacuoles. Our findings provide novel insights into PFOS accumulation in lettuce and further understanding of multiprocess mechanisms of LACV.
Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes del Suelo , Fluorocarburos/análisis , Humanos , Lactuca , Suelo , Contaminantes del Suelo/análisisRESUMEN
Synthesis of inorganic nanomaterials such as metal nanoparticles (MNPs) using various biological entities as smart nanofactories has emerged as one of the foremost scientific endeavors in recent years. The biosynthesis process is environmentally friendly, cost-effective and easy to be scaled up, and can also bring neat features to products such as high dispersity and biocompatibility. However, the biomanufacturing of inorganic nanomaterials is still at the trial-and-error stage due to the lack of understanding for underlying mechanism. Dissimilatory metal reduction bacteria, especially Shewanella and Geobacter species, possess peculiar extracellular electron transfer (EET) features, through which the bacteria can pump electrons out of their cells to drive extracellular reduction reactions, and have thus exhibited distinct advantages in controllable and tailorable fabrication of inorganic nanomaterials including MNPs and graphene. Our aim is to present a critical review of recent state-of-the-art advances in inorganic biosynthesis methodologies based on bacterial EET using Shewanella and Geobacter species as typical strains. We begin with a brief introduction about bacterial EET mechanism, followed by reviewing key examples from literatures that exemplify the powerful activities of EET-enabled biosynthesis routes towards the production of a series of inorganic nanomaterials and place a special emphasis on rationally tailoring the structures and properties of products through the fine control of EET pathways. The application prospects of biogenic nanomaterials are then highlighted in multiple fields of (bio-) energy conversion, remediation of organic pollutants and toxic metals, and biomedicine. A summary and outlook are given with discussion on challenges of bio-manufacturing with well-defined controllability.