Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nano Lett ; 24(4): 1176-1183, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38240634

RESUMEN

Metal oxide semiconductor (MOS)-based complementary thin-film transistor (TFT) circuits have broad application prospects in large-scale flexible electronics. To simplify circuit design and increase integration density, basic complementary circuits require both p- and n-channel transistors based on an individual semiconductor. However, until now, no MOSs that can simultaneously show p- and n-type conduction behavior have been reported. Herein, we demonstrate for the first time that Cu-doped SnO (Cu:SnO) with HfO2 capping can be employed for high-performance p- and n-channel TFTs. The interstitial Cu+ can induce an n-doping effect while restraining electron-electron scatterings by removing conduction band minimum degeneracy. As a result, the Cu3 atom %:SnO TFTs exhibit a record high electron mobility of 43.8 cm2 V-1 s-1. Meanwhile, the p-channel devices show an ultrahigh hole mobility of 2.4 cm2 V-1 s-1. Flexible complementary logics are then established, including an inverter, NAND gates, and NOR gates. Impressively, the inverter exhibits an ultrahigh gain of 302.4 and excellent operational stability and bending reliability.

2.
Nano Lett ; 23(14): 6664-6672, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37432041

RESUMEN

Atomically thin monolayer two-dimensional (2D) semiconductors with natural immunity to short channel effects are promising candidates for sub-10 nm very large-scale integration technologies. Herein, the ultimate limit in optoelectronic performances of monolayer WSe2 field-effect transistors (FETs) is examined by constructing a sloping channel down to 6 nm. Using a simple scaling method compatible with current micro/nanofabrication technologies, we achieve a record high saturation current up to 1.3 mA/µm at room temperature, surpassing any reported monolayer 2D semiconductor transistors. Meanwhile, quasi-ballistic transport in WSe2 FETs is first demonstrated; the extracted high saturation velocity of 4.2 × 106 cm/s makes it suitable for extremely sensitive photodetectors. Furthermore, the photoresponse speed can be improved by reducing channel length due to an electric field-assisted detrapping process of photogenerated carriers in localized states. As a result, the sloping-channel device exhibits a faster response, higher detectivity, and additional polarization resolution ability compared to planar micrometer-scale devices.

3.
Nano Lett ; 22(1): 494-500, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34964627

RESUMEN

Nonvolatile optoelectronic memories based on organic-inorganic hybrid perovskites have appeared as powerful candidates for next-generation soft electronics. Here, ambipolar SnO transistor-based nonvolatile memories with multibit memory behavior (11 storage states, 120 nC state-1) and ultralong retention time (>105 s) are demonstrated for which an Al2O3/two-dimensional Ruddlesden-Popper perovskite (2D PVK) heterostructure dielectric architecture is employed. The unique storage features are attributed to suppressed gate leakage by Al2O3 layer and hopping-like ionic transport in 2D PVK with varying activation energy under different light intensities. The photoinduced field-effect mechanism enables top-gated transistor operation under illumination, which would not be achieved under dark. As a result, the device exhibits remarkable photoresponsive characteristics, including ultrahigh specific detectivity (2.7 × 1015 Jones) and broadband spectrum distinction capacity (375-1064 nm). This study offers valuable insight on the PVK-based dielectric engineering for information storage and paves the way toward multilevel broadband-response optoelectronic memories.

4.
Nano Lett ; 22(24): 10192-10199, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36475758

RESUMEN

The emerging Ruddlesden-Popper two-dimensional perovskite (2D PVK) has recently joined the family of 2D semiconductors as a potential competitor for building van der Waals (vdW) heterostructures in future optoelectronics. However, to date, most of the reported heterostructures based on 2D PVKs suffer from poor spectral response that is caused by intrinsic wide bandgap of constituting materials. Herein, a direct heterointerface bandgap (∼0.4 eV) between 2D PVK and ReS2 is demonstrated. The strong interlayer coupling reduces the energy interval at the heterojunction region so that the heterostructure shows high sensitivity with the spectral response expanding to 2000 nm. The large type-II band offsets exceeding 1.1 eV ensure fast photogenerated carriers separation at the heterointerface. When this heterostructure is used as a self-driven photodetector, it exhibits a record high detectivity up to 1.8 × 1014 Jones, surpassing any reported 2D self-driven devices, and an impressive external quantum efficiency of 68%.

5.
Small ; 16(5): e1905609, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31899596

RESUMEN

All-inorganic halide perovskites (IHPs) have attracted enormous attention due to their intrinsically high optical absorption coefficient and superior ambient stabilities. However, the photosensitivity of IHP-based photodetectors is still restricted by their poor conductivities. Here, a facile design of hybrid phototransistors based on the CsPbBr3 thin film and indium tin oxide (ITO) nanowires (NWs) integrated into a InGaZnO channel in order to achieve both high photoresponsivity and fast response is reported. The metallic ITO NWs are employed as electron pumps and expressways to efficiently extract photocarriers from CsPbBr3 and inject electrons into InGaZnO. The obtained device exhibits the outstanding responsivity of 4.9 × 106 A W-1 , which is about 100-fold better than the previous best results of CsPbBr3 -based photodetectors, together with the fast response (0.45/0.55 s), long-term stability (200 h in ambient), and excellent mechanical flexibility. By operating the phototransistor in the depletion regime, an ultrahigh specific detectivity up to 7.6 × 1013 Jones is achieved. More importantly, the optimized spin-coating manufacturing process is highly beneficial for achieving uniform InGaZnO-ITO/perovskite hybrid films for high-performance flexible detector arrays. All these results can not only indicate the potential of these hybrid phototransistors but also provide a valuable insight into the design of hybrid material systems for high-performance photodetection.

6.
Small ; 15(25): e1901004, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31087760

RESUMEN

Phototransistors are recognized as highly sensitive photodetectors owing to their high gain induced by a photogating effect. However, the response speed of a typical phototransistor is rather slow due to the long lifetime of trapped carriers in the channel. Here, a novel Schottky barrier-controlled phototransistor that shows ultrahigh sensitivity as well as a fast response speed is reported. The device is based on a channel of few-layer black phosphorous modified with a MAPbI3- x Clx perovskite layer, whose channel current is limited by the Schottky barrier at the source electrode. The photoresponse speed of the device can be tuned by changing the drain voltage, which is attributed to a field-assisted detrapping process of electrons in the perovskite layer close to the Schottky barrier. Under optimal conditions, the device exhibits a high responsivity of 106 -108 A W-1 , an ultrahigh specific detectivity up to 9 × 1013 Jones, and a response time of ≈10 ms.

7.
Small ; 11(44): 5932-8, 2015 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-26426344

RESUMEN

A top-gated MoS2 transistor with 6 nm thick HfO2 is fabricated using an ozone pretreatment. The influence to the top-gated mobility brought about by the deposition of HfO2 is studied statistically, for the first time. The top-gated mobility is suppressed by the deposition of HfO2 , and multilayered samples are less susceptible than monolayer ones.

8.
Small ; 11(2): 208-13, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25115804

RESUMEN

Charge trapping layers are formed from different metallic nanocrystals in MoS2 -based nanocrystal floating gate memory cells in a process compatible with existing fabrication technologies. The memory cells with Au nanocrystals exhibit impressive performance with a large memory window of 10 V, a high program/erase ratio of approximately 10(5) and a long retention time of 10 years.

9.
Nano Lett ; 13(7): 3287-92, 2013 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-23796312

RESUMEN

"One key to one lock" hybrid sensor configuration is rationally designed and demonstrated as a direct effective route for the target-gas-specific, highly sensitive, and promptly responsive chemical gas sensing for room temperature operation in a complex ambient background. The design concept is based on three criteria: (i) quasi-one-dimensional metal oxide nanostructures as the sensing platform which exhibits good electron mobility and chemical and thermal stability; (ii) deep enhancement-mode field-effect transistors (E-mode FETs) with appropriate threshold voltages to suppress the nonspecific sensitivity to all gases (decouple the selectivity and sensitivity away from nanowires); (iii) metal nanoparticle decoration onto the nanostructure surface to introduce the gas specific selectivity and sensitivity to the sensing platform. In this work, using Mg-doped In2O3 nanowire E-mode FET sensor arrays decorated with various discrete metal nanoparticles (i.e., Au, Ag, and Pt) as illustrative prototypes here further confirms the feasibility of this design. Particularly, the Au decorated sensor arrays exhibit more than 3 orders of magnitude response to the exposure of 100 ppm CO among a mixture of gases at room temperature. The corresponding response time and detection limit are as low as ∼4 s and ∼500 ppb, respectively. All of these could have important implications for this "one key to one lock" hybrid sensor configuration which potentially open up a rational avenue to the design of advanced-generation chemical sensors with unprecedented selectivity and sensitivity.


Asunto(s)
Técnicas Biosensibles/instrumentación , Conductometría/instrumentación , Gases/análisis , Nanopartículas del Metal/química , Nanotecnología/instrumentación , Nanocables/química , Transistores Electrónicos , Diseño de Equipo , Análisis de Falla de Equipo , Gases/química , Nanopartículas del Metal/ultraestructura , Microquímica/instrumentación , Nanocables/ultraestructura
10.
Nat Nanotechnol ; 19(4): 448-454, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38177277

RESUMEN

Van der Waals (vdW) gaps with ångström-scale heights can confine molecules or ions to an ultimately small scale, providing an alternative way to tune material properties and explore microscopic phenomena. Modulation of the height of vdW gaps between two-dimensional (2D) materials is challenging due to the vdW interaction. Here we report a general approach to control the vdW gap by preadsorption of water molecules on the material surface. By controlling the saturation vapour pressure of water vapour, we can precisely control the adsorption level of water molecules and vary the height of the vdW gaps of MoS2 homojunctions from 5.5 Å to 53.6 Å. This technique can be further applied to other homo- and heterojunctions, constructing controlled vdW gaps in 2D artificial superlattices and in 2D/3D and 3D/3D heterojunctions. Engineering the vdW gap has great practical potential to modulate the device performance, as evidenced by the vdW-gap-dependent diode characteristics of the MoS2/gap/MoS2 junction. Our work introduces a general strategy of molecular preadsorption that can extend to various precursors, creating more tunability and variability in vdW material systems.

11.
Nat Commun ; 14(1): 1972, 2023 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-37031227

RESUMEN

Spherical geometry, adaptive optics, and highly dense network of neurons bridging the eye with the visual cortex, are the primary features of human eyes which enable wide field-of-view (FoV), low aberration, excellent adaptivity, and preprocessing of perceived visual information. Therefore, fabricating spherical artificial eyes has garnered enormous scientific interest. However, fusing color vision, in-device preprocessing and optical adaptivity into spherical artificial eyes has always been a tremendous challenge. Herein, we demonstrate a bionic eye comprising tunable liquid crystal optics, and a hemispherical neuromorphic retina with filter-free color vision, enabled by wavelength dependent bidirectional synaptic photo-response in a metal-oxide nanotube/perovskite nanowire hybrid structure. Moreover, by tuning the color selectivity with bias, the device can reconstruct full color images. This work demonstrates a unique approach to address the color vision and optical adaptivity issues associated with artificial eyes that can bring them to a new level approaching their biological counterparts.


Asunto(s)
Visión de Colores , Nanocables , Prótesis Visuales , Humanos , Retina/fisiología , Óxidos
12.
BJS Open ; 6(2)2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35482024

RESUMEN

BACKGROUND: The efficacy of repeat hepatic resection (rHR) in the treatment of recurrent hepatocellular carcinoma compared with radiofrequency or microwave ablation after resection of the primary tumour remains controversial. A systematic review and meta-analysis were performed to compare the safety and efficacy of these procedures. METHODS: PubMed, Embase, Scopus, Cochrane Library, and China National Knowledge Infrastructure databases were systematically searched to identify related studies published before 10 October 2021. Overall and recurrence-free survival after different treatments were compared based on pooled hazard ratios with a random-effects model. RESULTS: Two randomized clinical trials and 28 observational studies were included, involving 1961 and 2787 patients who underwent rHR and ablation respectively. Median perioperative mortality in both groups was zero but patients in the rHR group had higher median morbidity rates (17.0 per cent) than those in the ablation group (3.3 per cent). rHR achieved significantly longer recurrence-free survival than ablation (HR 0.79, 95 per cent c.i. 0.70 to 0.89, P < 0.001), while both groups had similar overall survival (HR 0.93, 95 per cent c.i. 0.83 to 1.04, P = 0.18). CONCLUSION: rHR and ablation based on radio- or microwaves are associated with similar overall survival in patients with recurrent hepatocellular carcinoma after resection of the primary tumour.


Asunto(s)
Carcinoma Hepatocelular , Ablación por Catéter , Neoplasias Hepáticas , Ablación por Radiofrecuencia , Carcinoma Hepatocelular/patología , Ablación por Catéter/efectos adversos , Ablación por Catéter/métodos , Hepatectomía/métodos , Humanos , Neoplasias Hepáticas/terapia
13.
Adv Sci (Weinh) ; 9(27): e2202019, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35869612

RESUMEN

The extraordinary optoelectronic properties and continued commercialization of GaN enable it a promising component for neuromorphic visual system (NVS). However, typical GaN-based optoelectronic devices demonstrated to data only show temporary and unidirectional photoresponse in ultraviolet region, which is an insurmountable obstacle for construction of NVS in practical applications. Herein, an ultrasensitive visual sensor with phototransistor architecture consisting of AlGaN/GaN high-electron-mobility-transistor (HEMT) and two-dimensional Ruddlesden-Popper organic-inorganic halide perovskite (2D OIHP) is reported. Utilizing the significant variation in activation energy for ion transport in 2D OIHP (from 1.3 eV under dark to 0.4 eV under illumination), the sensor can efficiently perceive and storage optical information in ultraviolet-visible region. Meanwhile, the photo-enhanced field-effect mechanism in the depletion-mode HEMT enables gate-tunable negative and positive photoresponse, where some typical optoelectronic synaptic functions including inhibitory and excitatory postsynaptic current as well as paired-pulse facilitation are demonstrated. More importantly, a NVS based on the proposed visual sensor array is constructed for achieving neuromorphic visual preprocessing with an improved color image recognition rate of 100%.


Asunto(s)
Técnicas Biosensibles , Galio , Compuestos de Aluminio , Técnicas Biosensibles/métodos , Compuestos de Calcio , Electrones , Óxidos , Titanio
14.
Sci Bull (Beijing) ; 66(8): 777-782, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-36654135

RESUMEN

The ever-decreasing size of transistors requires effectively electrostatic control over ultra-thin semiconductor body. Rational design of the gate configuration can fully persevere the intrinsic property of two-dimensional (2D) semiconductors. Here we design and demonstrate a 2D MoS2 transistor with omega-shaped gate, in which the local gate coupling is enhanced by the non-planar geometry. The omega-shaped non-planar transistors exhibit a high current of 0.89 A/µm and transconductance of 32.7 µS/µm. The high performance and desirable current saturation promise the construction of robust logic gate. The inverters show a voltage gain of 26.6 and an ideal total margin nearly 89%. We also assemble NOT-AND (NAND) gate on an individual MoS2 flake, and the constructed NAND gate demonstrates the universal functionality of the transistors as well. This work provides an alternative strategy to fully take the advantages of 2D materials for high-performance field-effect transistors.

15.
Adv Sci (Weinh) ; 8(14): e2100569, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34032025

RESUMEN

Photodetectors built from conventional bulk materials such as silicon, III-V or II-VI compound semiconductors are one of the most ubiquitous types of technology in use today. The past decade has witnessed a dramatic increase in interest in emerging photodetectors based on perovskite materials driven by the growing demands for uncooled, low-cost, lightweight, and even flexible photodetection technology. Though perovskite has good electrical and optical properties, perovskite-based photodetectors always suffer from nonideal quantum efficiency and high-power consumption. Joint manipulation of electrons and photons in perovskite photodetectors is a promising strategy to improve detection efficiency. In this review, electrical and optical characteristics of typical types of perovskite photodetectors are first summarized. Electrical manipulations of electrons in perovskite photodetectors are discussed. Then, artificial photonic nanostructures for photon manipulations are detailed to improve light absorption efficiency. By reviewing the manipulation of electrons and photons in perovskite photodetectors, this review aims to provide strategies to achieve high-performance photodetectors.

16.
Nat Commun ; 11(1): 4266, 2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32848133

RESUMEN

Two-dimensional (2D) Ruddlesden-Popper perovskites are currently drawing significant attention as highly-stable photoactive materials for optoelectronic applications. However, the insulating nature of organic ammonium layers in 2D perovskites results in poor charge transport and limited performance. Here, we demonstrate that Al2O3/2D perovskite heterostructure can be utilized as photoactive dielectric for high-performance MoS2 phototransistors. The type-II band alignment in 2D perovskites facilitates effective spatial separation of photo-generated carriers, thus achieving ultrahigh photoresponsivity of >108 A/W at 457 nm and >106 A/W at 1064 nm. Meanwhile, the hysteresis loops induced by ionic migration in perovskite and charge trapping in Al2O3 can neutralize with each other, leading to low-voltage phototransistors with negligible hysteresis and improved bias stress stability. More importantly, the recombination of photo-generated carriers in 2D perovskites depends on the external biasing field. With an appropriate gate bias, the devices exhibit wavelength-dependent constant photoresponsivity of 103-108 A/W regardless of incident light intensity.

17.
Adv Mater ; 32(6): e1907527, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31867813

RESUMEN

Organic-inorganic hybrid perovskites (PVKs) have recently emerged as attractive materials for photodetectors. However, the poor stability and low electrical conductivity still restrict their practical utilization. Owing to the quantum-well feature of two-dimensional (2D) Ruddlesden-Popper PVKs (2D PVKs), a promising quasi-2D PVK/indium gallium zinc oxide (IGZO) heterostructure phototransistor can be designed. By using a simple ligand-exchange spin-coating method, quasi-2D PVK fabricated on flexible substrates exhibits a desirable type-II energy band alignment, which facilitates effective spatial separation of photoexcited carriers. The device exhibits excellent photoresponsivity values of >105 A W-1 at 457 nm, and broadband photoresponse (457-1064 nm). By operating the device in the depletion regime, the specific detectivity is found to be 5.1 × 1016 Jones, which is the record high value among all PVK-based photodetectors reported to date. Due to the resistive hopping barrier in the quasi-2D PVK, the device can also work as an optoelectronic memory for near-infrared information storage. More importantly, the easy manufacturing process is highly beneficial, enabling large-scale and uniform quasi-2D PVK/IGZO hybrid films for detector arrays with outstanding ambient and operation stabilities. All these findings demonstrate the device architecture here provides a rational avenue to the design of next-generation flexible photodetectors with unprecedented sensitivity.

18.
Sci Bull (Beijing) ; 64(15): 1067-1079, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36659766

RESUMEN

As the scaling of silicon-based field-effect transistors has approached its physical limits, the search for alternative channel materials for future logic devices has attracted much attention. The discovery of graphene has unveiled another material family with layered structures called two-dimensional (2D) materials. Black phosphorus (BP), the most stable allotrope of phosphorus, was introduced as a new type of 2D material in 2014. Thanks to its high mobility, in-plane anisotropy and direct band gap, BP is considered to be a promising candidate for next-generation electronic and optoelectronic devices. Numerous studies have demonstrated the beneficial effects of introducing BP for device architectures. Herein, we present a review outlining recent progress towards high performance BP-based transistors. This review starts with the fundamental properties of BP, including its crystal structure, bandgap, and direct current (DC) and radio-frequency (RF) characteristics, followed by a detailed description of the modulation and application of those properties, involving anisotropy, functionalization and superlattices. Furthermore, we also discuss device design for high-performance transistors, with particular emphasis on interface engineering and device stability. Finally, we offer our perspective on the future of BP electronics, aiming to benefit colleagues who are interested in this exciting research field.

19.
ACS Nano ; 13(4): 4804-4813, 2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-30938515

RESUMEN

As compared with epitaxial semiconductor devices, two-dimensional (2D) heterostructures offer alternative facile platforms for many optoelectronic devices. Among them, photovoltaic based photodetectors can give fast response, while the photogate devices can lead to high responsivity. Here, we report a 2D photogate photodiode, which combines the benefits of 2D black phosphorus/MoS2 photodiodes with the emerging potential of perovskite, to achieve both fast response and high responsivity. This device architecture is constructed based on the fast photovoltaic operation together with the high-gain photogating effect. Under reverse bias condition, the device exhibits high responsivity (11 A/W), impressive detectivity (1.3 × 1012 Jones), fast response (150/240 µs), and low dark current (3 × 10-11 A). All these results are already much better in nearly all aspects of performance than the previously reported 2D photodiodes operating in reverse bias, achieving the optimal balance between all figure-of-merits. Importantly, with a zero bias, the device can also yield high detectivity (3 × 1011 Jones), ultrahigh light on/off ratio (3 × 107), and extremely high external quantum efficiency (80%). This device architecture thus has a promise for high-efficiency photodetection and photovoltaic energy conversion.

20.
ACS Appl Mater Interfaces ; 11(36): 33188-33193, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31415147

RESUMEN

Metal-semiconductor-metal (MSM)-structured GaAs-based nanowire photodetectors have been widely reported because they are promising as an alternative for high-performance devices. Owing to the Schottky built-in electric fields in the MSM structure photodetectors, enhancements in photoresponsivity can be realized. Thus, strengthening the built-in electric field is an efficacious way to make the detection capability better. In this study, we fabricate a single GaAs nanowire MSM photodetector with superior performance by doping-adjusting the Fermi level to strengthen the built-in electric field. An outstanding responsivity of 1175 A/W is obtained. This is two orders of magnitude better than the responsivity of the undoped sample. Scanning photocurrent mappings and simulations are performed to confirm that the enhancement in responsivity is because of the increase in the hole Schottky built-in electric field, which can separate and collect the photogenerated carriers more effectively. The eloquent evidence clearly proves that doping-adjusting the Fermi level has great potential applications in high-performance GaAs nanowire photodetectors and other functional photodetectors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA