Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 174(3): 564-575.e18, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-30033362

RESUMEN

The prostate cancer (PCa) risk-associated SNP rs11672691 is positively associated with aggressive disease at diagnosis. We showed that rs11672691 maps to the promoter of a short isoform of long noncoding RNA PCAT19 (PCAT19-short), which is in the third intron of the long isoform (PCAT19-long). The risk variant is associated with decreased and increased levels of PCAT19-short and PCAT19-long, respectively. Mechanistically, the risk SNP region is bifunctional with both promoter and enhancer activity. The risk variants of rs11672691 and its LD SNP rs887391 decrease binding of transcription factors NKX3.1 and YY1 to the promoter of PCAT19-short, resulting in weaker promoter but stronger enhancer activity that subsequently activates PCAT19-long. PCAT19-long interacts with HNRNPAB to activate a subset of cell-cycle genes associated with PCa progression, thereby promoting PCa tumor growth and metastasis. Taken together, these findings reveal a risk SNP-mediated promoter-enhancer switching mechanism underlying both initiation and progression of aggressive PCa.


Asunto(s)
Neoplasias de la Próstata/genética , ARN Largo no Codificante/genética , Alelos , Línea Celular Tumoral , Elementos de Facilitación Genéticos/genética , Regulación Neoplásica de la Expresión Génica/genética , Frecuencia de los Genes/genética , Predisposición Genética a la Enfermedad/genética , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Isoformas de ARN/genética , Factores de Riesgo , Factores de Transcripción/metabolismo , Factor de Transcripción YY1/metabolismo
2.
Cell ; 174(3): 758-769.e9, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-30033370

RESUMEN

While mutations affecting protein-coding regions have been examined across many cancers, structural variants at the genome-wide level are still poorly defined. Through integrative deep whole-genome and -transcriptome analysis of 101 castration-resistant prostate cancer metastases (109X tumor/38X normal coverage), we identified structural variants altering critical regulators of tumorigenesis and progression not detectable by exome approaches. Notably, we observed amplification of an intergenic enhancer region 624 kb upstream of the androgen receptor (AR) in 81% of patients, correlating with increased AR expression. Tandem duplication hotspots also occur near MYC, in lncRNAs associated with post-translational MYC regulation. Classes of structural variations were linked to distinct DNA repair deficiencies, suggesting their etiology, including associations of CDK12 mutation with tandem duplications, TP53 inactivation with inverted rearrangements and chromothripsis, and BRCA2 inactivation with deletions. Together, these observations provide a comprehensive view of how structural variations affect critical regulators in metastatic prostate cancer.


Asunto(s)
Variación Estructural del Genoma/genética , Neoplasias de la Próstata/genética , Anciano , Anciano de 80 o más Años , Proteína BRCA2/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Variaciones en el Número de Copia de ADN , Exoma , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Humanos , Masculino , Persona de Mediana Edad , Mutación , Metástasis de la Neoplasia/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Secuencias Repetidas en Tándem/genética , Proteína p53 Supresora de Tumor/metabolismo , Secuenciación Completa del Genoma/métodos
4.
J Biol Chem ; 298(2): 101556, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34973338

RESUMEN

Enzalutamide, a second-generation antiandrogen, is commonly prescribed for the therapy of advanced prostate cancer, but enzalutamide-resistant, lethal, or incurable disease invariably develops. To understand the molecular mechanism(s) behind enzalutamide resistance, here, we comprehensively analyzed a range of prostate tumors and clinically relevant models by gene expression array, immunohistochemistry, and Western blot, which revealed that enzalutamide-resistant prostate cancer cells and tumors overexpress the pseudokinase, Tribbles 2 (TRIB2). Inhibition of TRIB2 decreases the viability of enzalutamide-resistant prostate cancer cells, suggesting a critical role of TRIB2 in these cells. Moreover, the overexpression of TRIB2 confers resistance in prostate cancer cells to clinically relevant doses of enzalutamide, and this resistance is lost upon inhibition of TRIB2. Interestingly, we found that TRIB2 downregulates the luminal markers androgen receptor and cytokeratin 8 in prostate cancer cells but upregulates the neuronal transcription factor BRN2 (Brain-2) and the stemness factor SOX2 (SRY-box 2) to induce neuroendocrine characteristics. Finally, we show that inhibition of either TRIB2 or its downstream targets, BRN2 or SOX2, resensitizes resistant prostate cancer cells to enzalutamide. Thus, TRIB2 emerges as a potential new regulator of transdifferentiation that confers enzalutamide resistance in prostate cancer cells via a mechanism involving increased cellular plasticity and lineage switching.


Asunto(s)
Benzamidas , Proteínas Quinasas Dependientes de Calcio-Calmodulina , Nitrilos , Feniltiohidantoína , Neoplasias de la Próstata , Benzamidas/farmacología , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Línea Celular Tumoral , Linaje de la Célula , Plasticidad de la Célula , Resistencia a Antineoplásicos , Humanos , Masculino , Nitrilos/farmacología , Feniltiohidantoína/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(4): 2032-2042, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31932422

RESUMEN

Resistance to androgen deprivation therapy, or castration-resistant prostate cancer (CRPC), is often accompanied by metastasis and is currently the ultimate cause of prostate cancer-associated deaths in men. Recently, secondary hormonal therapies have led to an increase of neuroendocrine prostate cancer (NEPC), a highly aggressive variant of CRPC. Here, we identify that high levels of cell surface receptor Trop2 are predictive of recurrence of localized prostate cancer. Moreover, Trop2 is significantly elevated in CRPC and NEPC, drives prostate cancer growth, and induces neuroendocrine phenotype. Overexpression of Trop2 induces tumor growth and metastasis while loss of Trop2 suppresses these abilities in vivo. Trop2-driven NEPC displays a significant up-regulation of PARP1, and PARP inhibitors significantly delay tumor growth and metastatic colonization and reverse neuroendocrine features in Trop2-driven NEPC. Our findings establish Trop2 as a driver and therapeutic target for metastatic prostate cancer with neuroendocrine phenotype and suggest that high Trop2 levels could identify cancers that are sensitive to Trop2-targeting therapies and PARP1 inhibition.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias Óseas/secundario , Carcinoma Neuroendocrino/patología , Moléculas de Adhesión Celular/metabolismo , Regulación Neoplásica de la Expresión Génica , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Animales , Antígenos de Neoplasias/genética , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/metabolismo , Carcinoma Neuroendocrino/tratamiento farmacológico , Carcinoma Neuroendocrino/metabolismo , Moléculas de Adhesión Celular/genética , Movimiento Celular , Proliferación Celular , Estudios de Seguimiento , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Invasividad Neoplásica , Fenotipo , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Pronóstico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
6.
J Biomed Sci ; 28(1): 68, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34625072

RESUMEN

BACKGROUND: NKX3.1, a prostate-specific tumor suppressor, is either genomically lost or its protein levels are severely downregulated, which are invariably associated with poor prognosis in prostate cancer (PCa). Nevertheless, a clear disconnect exists between its mRNA and protein levels, indicating that its post-translational regulation may be critical in maintaining its protein levels. Similarly, AURKA is vastly overexpressed in all stages of prostate cancer (PCa), including castration-resistant PCa (CRPC) and neuroendocrine PCa (NEPC), although its transcripts are only increased in ~ 15% of cases, hinting at additional mechanisms of deregulation. Thus, identifying the upstream regulators that control AURKA and NKX3.1's levels and/or their downstream effectors offer an alternative route to inhibit AURKA and upregulate NKX3.1 in highly fatal CRPC and NEPC. AURKA and NKX3.1 have not linked to each other in any study to date. METHODS: A chemical genetic screen revealed NKX3.1 as a direct target of AURKA. AURKA-NKX3.1 cross-talk was analyzed using several biochemical techniques in CRPC and NEPC cells. RESULTS: We uncovered a reciprocal loop between AURKA and NKX3.1 in CRPC and NEPC cells. We observed that AURKA-mediated NKX3.1 downregulation is a major mechanism that drives CRPC pathogenesis and NEPC differentiation. AURKA phosphorylates NKX3.1 at three sites, which degrades it, but AURKA does not regulate NKX3.1 mRNA levels. NKX3.1 degradation drives highly aggressive oncogenic phenotypes in cells. NKX3.1 also degrades AURKA in a feedback loop. NKX3.1-AURKA loop thus upregulates AKT, ARv7 and Androgen Receptor (AR)-signaling in tandem promoting highly malignant phenotypes. Just as importantly, we observed that NKX3.1 overexpression fully abolished synaptophysin and enolase expression in NEPC cells, uncovering a strong negative relationship between NKX3.1 and neuroendocrine phenotypes, which was further confirmed be measuring neurite outgrowth. While WT-NKX3.1 inhibited neuronal differentiation, 3A-NKX3.1 expression obliterated it. CONCLUSIONS: NKX3.1 loss could be a major mechanism causing AURKA upregulation in CRPC and NEPC and vice versa. NKX3.1 genomic loss requires gene therapy, nonetheless, targeting AURKA provides a powerful tool to maintain NKX3.1 levels. Conversely, when NKX3.1 upregulation strategy using small molecules comes to fruition, AURKA inhibition should work synergistically due to the reciprocal loop in these highly aggressive incurable diseases.


Asunto(s)
Aurora Quinasa A/genética , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/genética , Neoplasias de la Próstata/genética , Factores de Transcripción/genética , Aurora Quinasa A/metabolismo , Castración , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Factores de Transcripción/metabolismo
7.
Adv Exp Med Biol ; 1210: 437-462, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31900920

RESUMEN

Progression to the malignant state is fundamentally dependent on transcriptional regulation in cancer cells. Optimum abundance of cell cycle proteins, angiogenesis factors, immune evasion markers, etc. is needed for proliferation, metastasis or resistance to treatment. Therefore, dysregulation of transcription factors can compromise the normal prostate transcriptional network and contribute to malignant disease progression.The androgen receptor (AR) is considered to be a key transcription factor in prostate cancer (PCa) development and progression. Consequently, androgen pathway inhibitors (APIs) are currently the mainstay in PCa treatment, especially in castration-resistant prostate cancer (CRPC). However, emerging evidence suggests that with increased administration of potent APIs, prostate cancer can progress to a highly aggressive disease that morphologically resembles small cell carcinoma, which is referred to as neuroendocrine prostate cancer (NEPC), treatment-induced or treatment-emergent small cell prostate cancer. This chapter will review how neuronal transcription factors play a part in inducing a plastic stage in prostate cancer cells that eventually progresses to a more aggressive state such as NEPC.


Asunto(s)
Carcinoma Neuroendocrino/genética , Carcinoma Neuroendocrino/patología , Progresión de la Enfermedad , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Factores de Transcripción/metabolismo , Carcinoma Neuroendocrino/tratamiento farmacológico , Proteínas de Ciclo Celular/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Receptores Androgénicos/metabolismo , Factores de Transcripción/antagonistas & inhibidores
8.
Int J Mol Sci ; 20(1)2019 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-30626088

RESUMEN

Localized prostate cancer (PCa) is often curable, whereas metastatic disease treated by castration inevitably progresses toward castration-resistant PCa (CRPC). Most CRPC treatments target androgen receptor (AR) signaling. However, not all CRPC cells rely on AR activity for survival and proliferation. With advances in immunotherapy and fluid biopsies for cancer management, expression systems specific for both AR-positive and -negative PCa are required for virus-based vaccines and cell imaging. To target both AR-responsive and non-responsive cells, we developed a three-step transcriptional amplification (3STA) system based on the progression elevated gene-3 (PEG3) promoter named PEG3AP1-3STA. Notably, we report on different genetic modifications that significantly improved PEG3 promoter's strength in PCa cells. Adenoviruses incorporating PEG3 promoter with and without transcriptional amplification systems were generated. The potential of PEG3AP1-3STA to target PCa cells was then evaluated in vitro and in vivo in androgen-responsive and non-responsive PCa cell lines. PEG3AP1-3STA was shown to be active in all PCa cell lines and not regulated by androgens, and its activity was amplified 97-fold compared to that of a non-amplified promoter. The PEG3AP1-3STA system can thus be used to target advanced AR+ and AR- cells for imaging or immunovirotherapy in advanced PCa.


Asunto(s)
Factores de Transcripción de Tipo Kruppel/genética , Regiones Promotoras Genéticas , Neoplasias de la Próstata/genética , Receptores Androgénicos/metabolismo , Transcripción Genética , Adenocarcinoma/genética , Andrógenos , Animales , Línea Celular Tumoral , Humanos , Mediciones Luminiscentes , Masculino , Células Neuroendocrinas/metabolismo , Tomografía de Emisión de Positrones , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Ratas
9.
Int J Cancer ; 136(6): E496-507, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25130271

RESUMEN

Increased expression of the molecular chaperone Hsp27 is associated with the progression of prostate cancer (PCa) to castration-resistant disease, which is lethal due to metastatic spread of the prostate tumor. Metastasis requires epithelial to mesenchymal transition (EMT), which endows cancer cells with the ability to disseminate from the primary tumor and colonize new tissue sites. A wide variety of secreted factors promote EMT, and while overexpression and constitutive activation of epidermal growth factor (EGF) signaling is associated with poor prognosis of PCa, a precise role of EGF in PCa progression to metastasis remains unclear. Here, we show that Hsp27 is required for EGF-induced cell migration, invasion and MMPs activity as well as the expression of EMT markers including Fibronectin, Vimentin and Slug with concomitant decrease of E-cadherin. Mechanistically, we found that Hsp27 is required for EGF-induced AKT and GSK3ß phosphorylation and ß-catenin nuclear translocation. Moreover, silencing Hsp27 decreases EGF dependent phosphorylation of ß-catenin on tyrosine 142 and 654, enhances ß-catenin ubiquitination and degradation, prevents ß-catenin nuclear translocation and binding to the Slug promoter. These data suggest that Hsp27 is required for EGF-mediated EMT via modulation of the ß-catenin/Slug signaling pathway. Together, our findings underscore the importance of Hsp27 in EGF induced EMT in PCa and highlight the use of Hsp27 knockdown as a useful strategy for patients with advanced disease.


Asunto(s)
Factor de Crecimiento Epidérmico/fisiología , Transición Epitelial-Mesenquimal , Proteínas de Choque Térmico HSP27/fisiología , Neoplasias de la Próstata/patología , beta Catenina/fisiología , Transporte Activo de Núcleo Celular , Línea Celular Tumoral , Movimiento Celular , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Proteínas de Choque Térmico , Humanos , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Chaperonas Moleculares , Invasividad Neoplásica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción de la Familia Snail , Factores de Transcripción/genética
10.
Oncol Rep ; 52(4)2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-39129317

RESUMEN

Prostate cancer (PCa) is the leading cause of cancer­related death among men worldwide. PCa often develops resistance to standard androgen deprivation therapy and androgen receptor (AR) pathway inhibitors, such as enzalutamide (ENZ). Therefore, there is an urgent need to develop novel therapeutic strategies for this disease. The efficacy of ADA­308 was evaluated through in vitro assessments of AR activity and cell proliferation, alongside in vivo studies. ADA­308 has emerged as a promising candidate, demonstrating potent inhibition of AR­sensitive adenocarcinoma as well as ENZ­resistant PCa cell lines. The results of the study revealed that ADA­308 effectively blocked AR activity, including its nuclear localization, and inhibited cell proliferation in vitro. Furthermore, ADA­308 demonstrated notable efficacy in vivo, with a robust antitumor response in ENZ­resistant models. These findings establish the role of ADA­308 as a potent AR inhibitor that overcomes resistance to AR­targeted therapies and highlights its potential as a novel therapeutic approach in advanced PCa management.


Asunto(s)
Adenocarcinoma , Antagonistas de Andrógenos , Benzamidas , Proliferación Celular , Resistencia a Antineoplásicos , Nitrilos , Feniltiohidantoína , Receptores Androgénicos , Humanos , Masculino , Feniltiohidantoína/farmacología , Feniltiohidantoína/análogos & derivados , Feniltiohidantoína/uso terapéutico , Nitrilos/farmacología , Nitrilos/uso terapéutico , Benzamidas/farmacología , Benzamidas/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Receptores Androgénicos/metabolismo , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Ratones , Animales , Antagonistas de Andrógenos/farmacología , Antagonistas de Andrógenos/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Antagonistas de Receptores Androgénicos/farmacología , Antagonistas de Receptores Androgénicos/uso terapéutico
11.
Commun Biol ; 7(1): 108, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238517

RESUMEN

Treatment-induced neuroendocrine prostate cancer (t-NEPC) is a lethal subtype of castration-resistant prostate cancer resistant to androgen receptor (AR) inhibitors. Our study unveils that AR suppresses the neuronal development protein dihydropyrimidinase-related protein 5 (DPYSL5), providing a mechanism for neuroendocrine transformation under androgen deprivation therapy. Our unique CRPC-NEPC cohort, comprising 135 patient tumor samples, including 55 t-NEPC patient samples, exhibits a high expression of DPYSL5 in t-NEPC patient tumors. DPYSL5 correlates with neuroendocrine-related markers and inversely with AR and PSA. DPYSL5 overexpression in prostate cancer cells induces a neuron-like phenotype, enhances invasion, proliferation, and upregulates stemness and neuroendocrine-related markers. Mechanistically, DPYSL5 promotes prostate cancer cell plasticity via EZH2-mediated PRC2 activation. Depletion of DPYSL5 decreases proliferation, induces G1 phase cell cycle arrest, reverses neuroendocrine phenotype, and upregulates luminal genes. In conclusion, DPYSL5 plays a critical role in regulating prostate cancer cell plasticity, and we propose the AR/DPYSL5/EZH2/PRC2 axis as a driver of t-NEPC progression.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Antagonistas de Andrógenos , Próstata/patología , Hidrolasas , Proteínas Asociadas a Microtúbulos , Proteína Potenciadora del Homólogo Zeste 2/genética
12.
Epigenomics ; : 1-4, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225130

RESUMEN

Neuroendocrine prostate cancer (NEPC) is a rare and aggressive subtype of prostate cancer (PCa), emerging from advanced treatments and characterized by loss of androgen receptor (AR) signaling and neuroendocrine features, leading to rapid progression and treatment resistance. The third symposium on treatment-induced NEPC, held from 21 to 23 June 2024, at Harrison Hot Springs Resort, BC, Canada, united leading global researchers and clinicians. Sponsored by the Vancouver Prostate Centre (VPC), Canadian Institute of Health Research, Prostate Cancer Foundation Canada and Pharma Planter Inc, the event focused on the latest NEPC research and innovative treatment strategies. Co-chaired by Drs. Yuzhuo Wang and Martin Gleave, the symposium featured sessions on NEPC's historical context, molecular pathways, epigenetic regulation and the role of the tumor microenvironment and metabolism in its progression. Keynotes from experts like Dr. Himisha Beltran and Dr. Martin Gleave highlighted the complexity of NEPC. The Emerging Talent session showcased new research, pointing to the future of NEPC treatment. The symposium concluded with a consensus on the need for early detection, targeted therapies and personalized medicine to effectively combat NEPC, emphasizing the importance of global collaboration in advancing NEPC understanding and treatment.

13.
Cell Rep Med ; 5(2): 101381, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38244540

RESUMEN

Neuroendocrine carcinomas, such as neuroendocrine prostate cancer and small-cell lung cancer, commonly have a poor prognosis and limited therapeutic options. We report that ubiquitin carboxy-terminal hydrolase L1 (UCHL1), a deubiquitinating enzyme, is elevated in tissues and plasma from patients with neuroendocrine carcinomas. Loss of UCHL1 decreases tumor growth and inhibits metastasis of these malignancies. UCHL1 maintains neuroendocrine differentiation and promotes cancer progression by regulating nucleoporin, POM121, and p53. UCHL1 binds, deubiquitinates, and stabilizes POM121 to regulate POM121-associated nuclear transport of E2F1 and c-MYC. Treatment with the UCHL1 inhibitor LDN-57444 slows tumor growth and metastasis across neuroendocrine carcinomas. The combination of UCHL1 inhibitors with cisplatin, the standard of care used for neuroendocrine carcinomas, significantly delays tumor growth in pre-clinical settings. Our study reveals mechanisms of UCHL1 function in regulating the progression of neuroendocrine carcinomas and identifies UCHL1 as a therapeutic target and potential molecular indicator for diagnosing and monitoring treatment responses in these malignancies.


Asunto(s)
Carcinoma Neuroendocrino , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Masculino , Humanos , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Carcinoma Neuroendocrino/tratamiento farmacológico , Carcinoma Neuroendocrino/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamiento farmacológico , Glicoproteínas de Membrana
14.
J Pathol ; 227(3): 286-97, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22553170

RESUMEN

The current paradigm of cancer care relies on predictive nomograms which integrate detailed histopathology with clinical data. However, when predictions fail, the consequences for patients are often catastrophic, especially in prostate cancer where nomograms influence the decision to therapeutically intervene. We hypothesized that the high dimensional data afforded by massively parallel sequencing (MPS) is not only capable of providing biological insights, but may aid molecular pathology of prostate tumours. We assembled a cohort of six patients with high-risk disease, and performed deep RNA and shallow DNA sequencing in primary tumours and matched metastases where available. Our analysis identified copy number abnormalities, accurately profiled gene expression levels, and detected both differential splicing and expressed fusion genes. We revealed occult and potentially dormant metastases, unambiguously supporting the patients' clinical history, and implicated the REST transcriptional complex in the development of neuroendocrine prostate cancer, validating this finding in a large independent cohort. We massively expand on the number of novel fusion genes described in prostate cancer; provide fresh evidence for the growing link between fusion gene aetiology and gene expression profiles; and show the utility of fusion genes for molecular pathology. Finally, we identified chromothripsis in a patient with chronic prostatitis. Our results provide a strong foundation for further development of MPS-based molecular pathology.


Asunto(s)
Adenocarcinoma/genética , Biomarcadores de Tumor/genética , Transformación Celular Neoplásica/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Neoplasias Hormono-Dependientes/genética , Células Neuroendocrinas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Neoplasias de la Próstata/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/secundario , Adenocarcinoma/terapia , Anciano , Empalme Alternativo , Biomarcadores de Tumor/sangre , Colombia Británica , Línea Celular Tumoral , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Análisis por Conglomerados , Técnicas de Apoyo para la Decisión , Dosificación de Gen , Fusión Génica , Predisposición Genética a la Enfermedad , Humanos , Metástasis Linfática , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Neoplasias Hormono-Dependientes/metabolismo , Neoplasias Hormono-Dependientes/patología , Neoplasias Hormono-Dependientes/terapia , Células Neuroendocrinas/patología , Nomogramas , Selección de Paciente , Fenotipo , Medicina de Precisión , Pronóstico , Antígeno Prostático Específico/sangre , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/terapia , Interferencia de ARN , Transfección
15.
Endocrinology ; 164(4)2023 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-36718085

RESUMEN

Despite the development of effective targeted therapies and a significant understanding of carcinogenesis and cancer progression, treatment resistance is a major obstacle in achieving durable long-term control in many types of cancers. Emerging evidence supports that nongenetic mechanisms could play an underappreciated role in therapy resistance. These mechanisms include phenotypic plasticity, which is recognized as a hallmark of cancer and translates to epigenetic and transcriptional control of gene expression. Alterations in the expression and activity of the epigenetic modifier enhancer of zeste homolog 2 (EZH2) support prostate cancer lineage plasticity and progression. EZH2 expression and activity is elevated in castration-resistant prostate cancer treated with androgen receptor pathway inhibitors and in treatment-resistant prostate cancer. Moreover, 17 known residues of EZH2 are phosphorylated on by multiple kinases that modulate its activity, localization, stability, and polycomb repressive complex (PRC2) assembly. In this review, we explore the contribution of EZH2 phosphorylation in regulating canonical PRC2 in a methylation-dependent manner as an epigenetic repressor and in a noncanonical manner independent of PRC2 as a transcription activator. Apart from the contribution of EZH2 phosphorylation at serine 21, threonine 350, and threonine 311 in prostate cancer progression and treatment resistance, we discuss how other EZH2 phosphorylated residues with unknown functions could contribute to prostate cancer based on their upstream regulators and potential therapeutic utility.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Neoplasias de la Próstata , Masculino , Humanos , Proteína Potenciadora del Homólogo Zeste 2/genética , Complejo Represivo Polycomb 2/genética , Neoplasias de la Próstata/metabolismo , Metilación , Carcinogénesis/genética , Regulación Neoplásica de la Expresión Génica
16.
Cancer Discov ; 13(8): 1771-1788, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37470668

RESUMEN

Lineage plasticity, a process whereby cells change their phenotype to take on a different molecular and/or histologic identity, is a key driver of cancer progression and therapy resistance. Although underlying genetic changes within the tumor can enhance lineage plasticity, it is predominantly a dynamic process controlled by transcriptional and epigenetic dysregulation. This review explores the transcriptional and epigenetic regulators of lineage plasticity and their interplay with other features of malignancy, such as dysregulated metabolism, the tumor microenvironment, and immune evasion. We also discuss strategies for the detection and treatment of highly plastic tumors. SIGNIFICANCE: Lineage plasticity is a hallmark of cancer and a critical facilitator of other oncogenic features such as metastasis, therapy resistance, dysregulated metabolism, and immune evasion. It is essential that the molecular mechanisms of lineage plasticity are elucidated to enable the development of strategies to effectively target this phenomenon. In this review, we describe key transcriptional and epigenetic regulators of cancer cell plasticity, in the process highlighting therapeutic approaches that may be harnessed for patient benefit.


Asunto(s)
Plasticidad de la Célula , Neoplasias , Humanos , Linaje de la Célula/genética , Plasticidad de la Célula/genética , Neoplasias/genética , Epigénesis Genética , Microambiente Tumoral/genética
17.
Cell Rep ; 42(8): 112937, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37552603

RESUMEN

Lineage plasticity is a form of therapy-induced drug resistance. In prostate cancer, androgen receptor (AR) pathway inhibitors potentially lead to the accretion of tumor relapse with loss of AR signaling and a shift from a luminal state to an alternate program. However, the molecular and signaling mechanisms orchestrating the development of lineage plasticity under the pressure of AR-targeted therapies are not fully understood. Here, a survey of receptor tyrosine kinases (RTKs) identifies ROR2 as the top upregulated RTK following AR pathway inhibition, which feeds into lineage plasticity by promoting stem-cell-like and neuronal networks. Mechanistically, ROR2 activates the ERK/CREB signaling pathway to modulate the expression of the lineage commitment transcription factor ASCL1. Collectively, our findings nominate ROR2 as a potential therapeutic target to reverse the ENZ-induced plastic phenotype and potentially re-sensitize tumors to AR pathway inhibitors.


Asunto(s)
Recurrencia Local de Neoplasia , Neoplasias de la Próstata , Humanos , Masculino , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias de la Próstata/genética , Transducción de Señal , Factores de Transcripción , Antagonistas de Receptores Androgénicos/uso terapéutico , Receptores Androgénicos/metabolismo , Línea Celular Tumoral , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética
18.
Mol Cancer Ther ; 22(10): 1166-1181, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37486978

RESUMEN

Prostate cancers adapt to androgen receptor (AR) pathway inhibitors and progress to castration resistance due to ongoing AR expression and function. To counter this, we developed a new approach to modulate the AR and inhibit castration-resistant prostate cancer (CRPC) using multivalent peptoid conjugates (MPC) that contain multiple copies of the AR-targeting ligand ethisterone attached to a peptidomimetic scaffold. Here, we investigated the antitumor effects of compound MPC309, a trivalent display of ethisterone conjugated to a peptoid oligomer backbone that binds to the AR with nanomolar affinity. MPC309 exhibited potent antiproliferative effects on various enzalutamide-resistant prostate cancer models, including those with AR splice variants, ligand-binding mutations, and noncanonical AR gene expression programs, as well as mouse prostate organoids harboring defined genetic alterations that mimic lethal human prostate cancer subtypes. MPC309 is taken up by cells through macropinocytosis, an endocytic process more prevalent in cancer cells than in normal ones, thus providing an opportunity to target tumors selectively. MPC309 triggers a distinct AR transcriptome compared with DHT and enzalutamide, a clinically used antiandrogen. Specifically, MPC309 enhances the expression of differentiation genes while reducing the expression of genes needed for cell division and metabolism. Mechanistically, MPC309 increases AR chromatin occupancy and alters AR interactions with coregulatory proteins in a pattern distinct from DHT. In xenograft studies, MPC309 produced significantly greater tumor suppression than enzalutamide. Altogether, MPC309 represents a promising new AR modulator that can combat resistant disease by promoting an AR antiproliferative gene expression program.


Asunto(s)
Peptoides , Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Masculino , Animales , Ratones , Humanos , Receptores Androgénicos/metabolismo , Peptoides/farmacología , Ligandos , Etisterona/farmacología , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Neoplasias de la Próstata/patología , Nitrilos/farmacología , Antagonistas de Receptores Androgénicos/farmacología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo
19.
Cancer Res ; 83(24): 4142-4160, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37801613

RESUMEN

Prostate cancer remains the second leading cause of cancer death in men in Western cultures. A deeper understanding of the mechanisms by which prostate cancer cells divide to support tumor growth could help devise strategies to overcome treatment resistance and improve survival. Here, we identified that the mitotic AGC family protein kinase citron kinase (CIT) is a pivotal regulator of prostate cancer growth that mediates prostate cancer cell interphase progression. Increased CIT expression correlated with prostate cancer growth induction and aggressive prostate cancer progression, and CIT was overexpressed in prostate cancer compared with benign prostate tissue. CIT overexpression was controlled by an E2F2-Skp2-p27 signaling axis and conferred resistance to androgen-targeted treatment strategies. The effects of CIT relied entirely on its kinase activity. Conversely, CIT silencing inhibited the growth of cell lines and xenografts representing different stages of prostate cancer progression and treatment resistance but did not affect benign epithelial prostate cells or nonprostatic normal cells, indicating a potential therapeutic window for CIT inhibition. CIT kinase activity was identified as druggable and was potently inhibited by the multikinase inhibitor OTS-167, which decreased the proliferation of treatment-resistant prostate cancer cells and patient-derived organoids. Isolation of the in vivo CIT substrates identified proteins involved in diverse cellular functions ranging from proliferation to alternative splicing events that are enriched in treatment-resistant prostate cancer. These findings provide insights into the regulation of aggressive prostate cancer cell behavior by CIT and identify CIT as a functionally diverse and druggable driver of prostate cancer progression. SIGNIFICANCE: The poorly characterized protein kinase citron kinase is a therapeutic target in prostate cancer that drives tumor growth by regulating diverse substrates, which control several hallmarks of aggressive prostate cancer progression. See related commentary by Mishra et al., p. 4008.


Asunto(s)
Próstata , Neoplasias de la Próstata , Proteínas Quinasas , Humanos , Masculino , Línea Celular Tumoral , Proliferación Celular , Próstata/patología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal
20.
Cell Rep ; 42(10): 113221, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37815914

RESUMEN

Advanced prostate cancers are treated with therapies targeting the androgen receptor (AR) signaling pathway. While many tumors initially respond to AR inhibition, nearly all develop resistance. It is critical to understand how prostate tumor cells respond to AR inhibition in order to exploit therapy-induced phenotypes prior to the outgrowth of treatment-resistant disease. Here, we comprehensively characterize the effects of AR blockade on prostate cancer metabolism using transcriptomics, metabolomics, and bioenergetics approaches. The metabolic response to AR inhibition is defined by reduced glycolysis, robust elongation of mitochondria, and increased reliance on mitochondrial oxidative metabolism. We establish DRP1 activity and MYC signaling as mediators of AR-blockade-induced metabolic phenotypes. Rescuing DRP1 phosphorylation after AR inhibition restores mitochondrial fission, while rescuing MYC restores glycolytic activity and prevents sensitivity to complex I inhibition. Our study provides insight into the regulation of treatment-induced metabolic phenotypes and vulnerabilities in prostate cancer.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Humanos , Masculino , Andrógenos/metabolismo , Línea Celular Tumoral , Neoplasias de la Próstata/genética , Neoplasias de la Próstata Resistentes a la Castración/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptores Androgénicos/efectos de los fármacos , Receptores Androgénicos/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA