Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 28(11): 4853-4866, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37737484

RESUMEN

Exposure to preadult environmental exposures may have long-lasting effects on mental health by affecting the maturation of the brain and personality, two traits that interact throughout the developmental process. However, environment-brain-personality covariation patterns and their mediation relationships remain unclear. In 4297 healthy participants (aged 18-30 years), we combined sparse multiple canonical correlation analysis with independent component analysis to identify the three-way covariation patterns of 59 preadult environmental exposures, 760 adult brain imaging phenotypes, and five personality traits, and found two robust environment-brain-personality covariation models with sex specificity. One model linked greater stress and less support to weaker functional connectivity and activity in the default mode network, stronger activity in subcortical nuclei, greater thickness and volume in the occipital, parietal and temporal cortices, and lower agreeableness, consciousness and extraversion as well as higher neuroticism. The other model linked higher urbanicity and better socioeconomic status to stronger functional connectivity and activity in the sensorimotor network, smaller volume and surface area and weaker functional connectivity and activity in the medial prefrontal cortex, lower white matter integrity, and higher openness to experience. We also conducted mediation analyses to explore the potential bidirectional mediation relationships between adult brain imaging phenotypes and personality traits with the influence of preadult environmental exposures and found both environment-brain-personality and environment-personality-brain pathways. We finally performed moderated mediation analyses to test the potential interactions between macro- and microenvironmental exposures and found that one category of exposure moderated the mediation pathways of another category of exposure. These results improve our understanding of the effects of preadult environmental exposures on the adult brain and personality traits and may facilitate the design of targeted interventions to improve mental health by reducing the impact of adverse environmental exposures.


Asunto(s)
Encéfalo , Personalidad , Adulto , Humanos , Neuroticismo , Mapeo Encefálico , Exposición a Riesgos Ambientales
2.
Cereb Cortex ; 33(17): 9718-9728, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37381580

RESUMEN

The intrinsic organizational structure of the brain is reflected in spontaneous brain oscillations. Its functional integration and segregation hierarchy have been discovered in space by leveraging gradient approaches to low-frequency functional connectivity. This hierarchy of brain oscillations has not yet been fully understood, since previous studies have mainly concentrated on the brain oscillations from a single limited frequency range (~ 0.01-0.1 Hz). In this work, we extended the frequency range and performed gradient analysis across multiple frequency bands of fast resting-state fMRI signals from the Human Connectome Project and condensed a frequency-rank cortical map of the highest gradient. We found that the coarse skeletons of the functional organization hierarchy are generalizable across the multiple frequency bands. Beyond that, the highest integration levels of connectivity vary in the frequency domain across different large-scale brain networks. These findings are replicated in another independent dataset and demonstrated that different brain networks can integrate information at varying rates, indicating the significance of examining the intrinsic architecture of spontaneous brain activity from the perspective of multiple frequency bands.


Asunto(s)
Encéfalo , Conectoma , Humanos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Mapeo Encefálico , Red Nerviosa/diagnóstico por imagen
3.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34260385

RESUMEN

The transition from childhood to adolescence is marked by pronounced shifts in brain structure and function that coincide with the development of physical, cognitive, and social abilities. Prior work in adult populations has characterized the topographical organization of the cortex, revealing macroscale functional gradients that extend from unimodal (somatosensory/motor and visual) regions through the cortical association areas that underpin complex cognition in humans. However, the presence of these core functional gradients across development as well as their maturational course have yet to be established. Here, leveraging 378 resting-state functional MRI scans from 190 healthy individuals aged 6 to 17 y old, we demonstrate that the transition from childhood to adolescence is reflected in the gradual maturation of gradient patterns across the cortical sheet. In children, the overarching organizational gradient is anchored within the unimodal cortex, between somatosensory/motor and visual territories. Conversely, in adolescence, the principal gradient of connectivity transitions into an adult-like spatial framework, with the default network at the opposite end of a spectrum from primary sensory and motor regions. The observed gradient transitions are gradually refined with age, reaching a sharp inflection point in 13 and 14 y olds. Functional maturation was nonuniformly distributed across cortical networks. Unimodal networks reached their mature positions early in development, while association regions, in particular the medial prefrontal cortex, reached a later peak during adolescence. These data reveal age-dependent changes in the macroscale organization of the cortex and suggest the scheduled maturation of functional gradient patterns may be critically important for understanding how cognitive and behavioral capabilities are refined across development.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Adolescente , Niño , Humanos , Red Nerviosa/fisiología
4.
Neuroimage ; 273: 120010, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36918136

RESUMEN

Resting-state fMRI is commonly used to derive brain parcellations, which are widely used for dimensionality reduction and interpreting human neuroscience studies. We previously developed a model that integrates local and global approaches for estimating areal-level cortical parcellations. The resulting local-global parcellations are often referred to as the Schaefer parcellations. However, the lack of homotopic correspondence between left and right Schaefer parcels has limited their use for brain lateralization studies. Here, we extend our previous model to derive homotopic areal-level parcellations. Using resting-fMRI and task-fMRI across diverse scanners, acquisition protocols, preprocessing and demographics, we show that the resulting homotopic parcellations are as homogeneous as the Schaefer parcellations, while being more homogeneous than five publicly available parcellations. Furthermore, weaker correlations between homotopic parcels are associated with greater lateralization in resting network organization, as well as lateralization in language and motor task activation. Finally, the homotopic parcellations agree with the boundaries of a number of cortical areas estimated from histology and visuotopic fMRI, while capturing sub-areal (e.g., somatotopic and visuotopic) features. Overall, these results suggest that the homotopic local-global parcellations represent neurobiologically meaningful subdivisions of the human cerebral cortex and will be a useful resource for future studies. Multi-resolution parcellations estimated from 1479 participants are publicly available (https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Yan2023_homotopic).


Asunto(s)
Mapeo Encefálico , Encéfalo , Humanos , Encéfalo/fisiología , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiología , Descanso
5.
Hum Brain Mapp ; 44(10): 4040-4051, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37146003

RESUMEN

The cognitive and behavioral development of children and adolescents is closely related to the maturation of brain morphology. Although the trajectory of brain development has been depicted in detail, the underlying biological mechanism of normal cortical morphological development in childhood and adolescence remains unclear. By combining the Allen Human Brain Atlas dataset with two single-site magnetic resonance imaging data including 427 and 733 subjects from China and the United States, respectively, we performed partial least squares regression and enrichment analysis to explore the relationship between the gene transcriptional expression and the development of cortical thickness in childhood and adolescence. We found that the spatial model of normal cortical thinning during childhood and adolescence is associated with genes expressed predominantly in astrocytes, microglia, excitatory and inhibitory neurons. Top cortical development-related genes are enriched for energy-related and DNA-related terms and are associated with psychological and cognitive disorders. Interestingly, there is a great deal of similarity between the findings derived from the two single-site datasets. This fills the gap between early cortical development and transcriptomes, which promotes an integrative understanding of the potential biological neural mechanisms.


Asunto(s)
Corteza Cerebral , Adelgazamiento de la Corteza Cerebral , Niño , Humanos , Adolescente , Corteza Cerebral/patología , Adelgazamiento de la Corteza Cerebral/patología , Encéfalo , Neuronas , Imagen por Resonancia Magnética/métodos
6.
Neuroimage ; 255: 119178, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35430358

RESUMEN

Brain development from 1 to 6 years of age anchors a wide range of functional capabilities and carries early signs of neurodevelopmental disorders. However, quantitative models for depicting brain morphology changes and making individualized inferences are lacking, preventing the identification of early brain atypicality during this period. With a sample size of 285, we characterized the age dependence of the cortical thickness and subcortical volume in neurologically normal children and constructed quantitative growth charts of all brain regions for preschool children. While the cortical thickness of most brain regions decreased with age, the entorhinal and parahippocampal regions displayed an inverted-U shape of age dependence. Compared to the cortical thickness, the normalized volume of subcortical regions exhibited more divergent trends, with some regions increasing, some decreasing, and some displaying inverted-U-shaped trends. The growth curve models for all brain regions demonstrated utilities in identifying brain atypicality. The percentile measures derived from the growth curves facilitate the identification of children with developmental speech and language disorders with an accuracy of 0.875 (area under the receiver operating characteristic curve: 0.943). Our results fill the knowledge gap in brain morphometrics in a critical development period and provide an avenue for individualized brain developmental status evaluation with demonstrated sensitivity. The brain growth charts are shared with the public (http://phi-group.top/resources.html).


Asunto(s)
Imagen por Resonancia Magnética , Trastornos del Neurodesarrollo , Encéfalo , Mapeo Encefálico/métodos , Preescolar , Gráficos de Crecimiento , Humanos , Imagen por Resonancia Magnética/métodos
7.
Mov Disord ; 37(5): 972-982, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35107831

RESUMEN

BACKGROUND: Idiopathic rapid eye movement sleep behavior disorder (iRBD) is a prodromal stage of synucleinopathies. Patients with synucleinopathies frequently display eye movement abnormalities. However, whether patients with iRBD have eye movement abnormalities remains unknown. OBJECTIVE: The aim of this study was to assess eye movement abnormalities and related gray matter alterations and explore whether such abnormalities can serve as biomarkers to indicate phenoconversion to synucleinopathies in iRBD. METHODS: Forty patients with iRBD with early disease progression and 35 healthy control subjects participated in a 15-minute ocular-tracking task that evaluated their control of eye movement abilities. They also underwent clinical assessments for olfactory function, nonmotor symptoms, and autonomic symptoms, all of which are biomarkers to predict phenoconversion to synucleinopathies in iRBD. A subgroup of the participants (20 patients with iRBD and 20 healthy control subjects) also participated in structural magnetic resonance imaging. RESULTS: The ocular-tracking ability in patients with iRBD was inferior to that of healthy control subjects in two aspects: pursuit initiation and steady-state tracking. Cortical thinning in the right visual area V4 in patients with iRBD is coupled with impaired pursuit initiation. Furthermore, prolonged pursuit initiation in patients with iRBD exhibits a trend of correlation with olfactory loss, the earliest biomarker that develops prior to other prodromal biomarkers. CONCLUSIONS: We found ocular-tracking abnormalities in patients with iRBD even early in their disease progression that have not been reported before. These abnormalities are coupled with atrophy of brain areas involved in the perception of object motion and might indicate phenoconversion to synucleinopathies in iRBD. © 2022 International Parkinson and Movement Disorder Society.


Asunto(s)
Trastorno de la Conducta del Sueño REM , Sinucleinopatías , Atrofia , Biomarcadores , Progresión de la Enfermedad , Humanos
8.
PLoS Comput Biol ; 17(9): e1009279, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34529652

RESUMEN

Replicability, the ability to replicate scientific findings, is a prerequisite for scientific discovery and clinical utility. Troublingly, we are in the midst of a replicability crisis. A key to replicability is that multiple measurements of the same item (e.g., experimental sample or clinical participant) under fixed experimental constraints are relatively similar to one another. Thus, statistics that quantify the relative contributions of accidental deviations-such as measurement error-as compared to systematic deviations-such as individual differences-are critical. We demonstrate that existing replicability statistics, such as intra-class correlation coefficient and fingerprinting, fail to adequately differentiate between accidental and systematic deviations in very simple settings. We therefore propose a novel statistic, discriminability, which quantifies the degree to which an individual's samples are relatively similar to one another, without restricting the data to be univariate, Gaussian, or even Euclidean. Using this statistic, we introduce the possibility of optimizing experimental design via increasing discriminability and prove that optimizing discriminability improves performance bounds in subsequent inference tasks. In extensive simulated and real datasets (focusing on brain imaging and demonstrating on genomics), only optimizing data discriminability improves performance on all subsequent inference tasks for each dataset. We therefore suggest that designing experiments and analyses to optimize discriminability may be a crucial step in solving the replicability crisis, and more generally, mitigating accidental measurement error.


Asunto(s)
Conectoma , Genoma , Artefactos , Mapeo Encefálico/métodos , Conjuntos de Datos como Asunto , Humanos , Reproducibilidad de los Resultados
9.
Cereb Cortex ; 31(10): 4477-4500, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-33942058

RESUMEN

Resting-state functional magnetic resonance imaging (rs-fMRI) allows estimation of individual-specific cortical parcellations. We have previously developed a multi-session hierarchical Bayesian model (MS-HBM) for estimating high-quality individual-specific network-level parcellations. Here, we extend the model to estimate individual-specific areal-level parcellations. While network-level parcellations comprise spatially distributed networks spanning the cortex, the consensus is that areal-level parcels should be spatially localized, that is, should not span multiple lobes. There is disagreement about whether areal-level parcels should be strictly contiguous or comprise multiple noncontiguous components; therefore, we considered three areal-level MS-HBM variants spanning these range of possibilities. Individual-specific MS-HBM parcellations estimated using 10 min of data generalized better than other approaches using 150 min of data to out-of-sample rs-fMRI and task-fMRI from the same individuals. Resting-state functional connectivity derived from MS-HBM parcellations also achieved the best behavioral prediction performance. Among the three MS-HBM variants, the strictly contiguous MS-HBM exhibited the best resting-state homogeneity and most uniform within-parcel task activation. In terms of behavioral prediction, the gradient-infused MS-HBM was numerically the best, but differences among MS-HBM variants were not statistically significant. Overall, these results suggest that areal-level MS-HBMs can capture behaviorally meaningful individual-specific parcellation features beyond group-level parcellations. Multi-resolution trained models and parcellations are publicly available (https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Kong2022_ArealMSHBM).


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Vías Nerviosas/fisiología , Mapeo Encefálico , Corteza Cerebral/fisiología , Conectoma , Femenino , Humanos , Individualidad , Masculino , Desempeño Psicomotor/fisiología , Descanso , Adulto Joven
10.
Mol Psychiatry ; 25(3): 517-529, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31827248

RESUMEN

The Chinese Imaging Genetics (CHIMGEN) study establishes the largest Chinese neuroimaging genetics cohort and aims to identify genetic and environmental factors and their interactions that are associated with neuroimaging and behavioral phenotypes. This study prospectively collected genomic, neuroimaging, environmental, and behavioral data from more than 7000 healthy Chinese Han participants aged 18-30 years. As a pioneer of large-sample neuroimaging genetics cohorts of non-Caucasian populations, this cohort can provide new insights into ethnic differences in genetic-neuroimaging associations by being compared with Caucasian cohorts. In addition to micro-environmental measurements, this study also collects hundreds of quantitative macro-environmental measurements from remote sensing and national survey databases based on the locations of each participant from birth to present, which will facilitate discoveries of new environmental factors associated with neuroimaging phenotypes. With lifespan environmental measurements, this study can also provide insights on the macro-environmental exposures that affect the human brain as well as their timing and mechanisms of action.


Asunto(s)
Pueblo Asiatico/genética , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Adulto , Encéfalo/metabolismo , China , Estudios de Cohortes , Etnicidad/genética , Femenino , Genómica/métodos , Voluntarios Sanos , Humanos , Masculino , Neuroimagen/métodos , Estudios Prospectivos , Investigación
11.
Neuroimage ; 223: 117277, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32818614

RESUMEN

Understanding individual differences in brain function is an essential aim of neuroscience. Naturalistic imaging links neural activity to real-life contexts and reflects individual differences in brain response. These unique features make it a promising tool for individualized psychiatry. An essential prerequisite for the extensive use of this paradigm is the reliable representation of inter-individual relationships. We used a test-retest approach to examine whether the naturalistic paradigm reliably represents inter-individual differences, which brain regions have the superior capability, and whether the ability alters with the contents of the stimuli. We quantified the reliability of the inter-subject relationships in repeated scans of two movie clips: a natural sight view and an emotion-evoking story. Besides statistical inference, we included resting-state scans, behavioral tests, and questionnaires as references for the comparison. The results showed that over one-third area of the brain could reliably characterize the inter-individual relationship, and the superior temporal lobe demonstrated comparable reliability representation with the State and Trait Anxiety Inventory. Furthermore, the temporal lobe regions could retain this capability across emotional movies with different contents. This study provides a base for pushing the naturalistic imaging paradigm towards clinical applications and proposes reliable target brain regions for future studies.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Individualidad , Imagen por Resonancia Magnética , Percepción Visual/fisiología , Adulto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Películas Cinematográficas , Estimulación Luminosa , Reproducibilidad de los Resultados , Adulto Joven
12.
Neuroimage ; 206: 116318, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31689538

RESUMEN

Spatial normalization or deformation to a standard brain template is routinely used as a key module in various pipelines for the processing of magnetic resonance imaging (MRI) data. Brain templates are often constructed using MRI data from a limited number of subjects. Individual brains show significant variabilities in their morphology; thus, sample sizes and population differences are two key factors that influence brain template construction. To address these influences, we employed two independent groups from the Human Connectome Project (HCP) and the Chinese Human Connectome Project (CHCP) to quantify the impacts of sample sizes and population on brain template construction. We first assessed the effect of sample size on the construction of volumetric brain templates using data subsets from the HCP and CHCP datasets. We applied a voxel-wise index of the deformation variability and a logarithmically transformed Jacobian determinant to quantify the variability associated with the template construction and modeled the brain template variability as a power function of the sample size. At the system level, the frontoparietal control network and dorsal attention network demonstrated higher deformation variability and logged Jacobian determinants, whereas other primary networks showed lower variability. To investigate the population differences, we constructed Caucasian and Chinese standard brain atlases (namely, US200 and CN200). The two demographically matched templates, particularly the language-related areas, exhibited dramatic bilaterally in supramarginal gyri and inferior frontal gyri differences in their deformation variability and logged Jacobian determinant. Using independent data from the HCP and CHCP, we examined the segmentation and registration accuracy and observed significant reduction in the performance of the brain segmentation and registration when the population-mismatched templates were used in the spatial normalization. Our findings provide evidence to support the use of population-matched templates in human brain mapping studies. The US200 and CN200 templates have been released on the Neuroimage Informatics Tools and Resources Clearinghouse (NITRC) website (https://www.nitrc.org/projects/us200_cn200/).


Asunto(s)
Variación Biológica Poblacional , Encéfalo/diagnóstico por imagen , Conectoma , Tamaño de la Muestra , Adolescente , Adulto , Pueblo Asiatico , Mapeo Encefálico , China , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/diagnóstico por imagen , Estados Unidos , Población Blanca , Adulto Joven
13.
Cereb Cortex ; 29(6): 2533-2551, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29878084

RESUMEN

Resting-state functional magnetic resonance imaging (rs-fMRI) offers the opportunity to delineate individual-specific brain networks. A major question is whether individual-specific network topography (i.e., location and spatial arrangement) is behaviorally relevant. Here, we propose a multi-session hierarchical Bayesian model (MS-HBM) for estimating individual-specific cortical networks and investigate whether individual-specific network topography can predict human behavior. The multiple layers of the MS-HBM explicitly differentiate intra-subject (within-subject) from inter-subject (between-subject) network variability. By ignoring intra-subject variability, previous network mappings might confuse intra-subject variability for inter-subject differences. Compared with other approaches, MS-HBM parcellations generalized better to new rs-fMRI and task-fMRI data from the same subjects. More specifically, MS-HBM parcellations estimated from a single rs-fMRI session (10 min) showed comparable generalizability as parcellations estimated by 2 state-of-the-art methods using 5 sessions (50 min). We also showed that behavioral phenotypes across cognition, personality, and emotion could be predicted by individual-specific network topography with modest accuracy, comparable to previous reports predicting phenotypes based on connectivity strength. Network topography estimated by MS-HBM was more effective for behavioral prediction than network size, as well as network topography estimated by other parcellation approaches. Thus, similar to connectivity strength, individual-specific network topography might also serve as a fingerprint of human behavior.


Asunto(s)
Corteza Cerebral , Cognición/fisiología , Emociones/fisiología , Modelos Neurológicos , Vías Nerviosas , Personalidad/fisiología , Adulto , Corteza Cerebral/anatomía & histología , Corteza Cerebral/fisiología , Conectoma/métodos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/métodos , Masculino , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología
14.
J Psychiatry Neurosci ; 44(2): 132-141, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30810024

RESUMEN

Background: Growing evidence indicates both shared and distinct features of emotional perception in schizophrenia, bipolar disorder and major depressive disorder. In these disorders, alterations in spontaneous low-frequency fluctuations have been reported in the neural system for emotional perception, but the similarities and differences in the amplitude of low-frequency fluctuation (ALFF) across the 3 disorders are unknown. Methods: We compared ALFF and its signal balance in the neural system for emotional perception at 2 frequency bands (slow-5 and slow-4) in 119 participants with schizophrenia, 100 with bipolar disorder, 123 with major depressive disorder and 183 healthy controls. We performed exploratory Pearson partial correlation analyses to determine the relationship between ALFF signal balance and clinical variables. Results: We observed commonalities in ALFF change patterns across the 3 disorders for emotional perception neural substrates, such as increased ALFF in the anterior cerebrum (including subcortical, limbic, paralimbic and heteromodal cortical regions) and decreased ALFF in the posterior visual cortices. Schizophrenia, bipolar disorder and major depressive disorder showed significantly decreased ALFF signal balance in the neural system for emotional perception at both slow-5 and slow-4 frequency bands, with the greatest alterations for schizophrenia, followed by bipolar disorder and major depressive disorder. We found a negative correlation between ALFF signal balance and negative/disorganized symptoms in slow-4 across the 3 disorders. Limitations: The relatively broad age range in our sample and the cross-sectional study design may not account for our findings. Conclusion: The extent of the commonalities we observed further support the concept of core neurobiological disruptions shared among the 3 disorders; ALFF signal balance could be an important neuroimaging marker for the diagnosis and treatment of schizophrenia, bipolar disorder and major depressive disorder.


Asunto(s)
Trastorno Bipolar/fisiopatología , Corteza Cerebral/fisiopatología , Trastorno Depresivo Mayor/fisiopatología , Emociones/fisiología , Sistema Límbico/fisiopatología , Neostriado/fisiopatología , Esquizofrenia/fisiopatología , Percepción Social , Adolescente , Adulto , Trastorno Bipolar/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Estudios Transversales , Trastorno Depresivo Mayor/diagnóstico por imagen , Femenino , Humanos , Sistema Límbico/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Neostriado/diagnóstico por imagen , Esquizofrenia/diagnóstico por imagen , Adulto Joven
15.
Cereb Cortex ; 28(4): 1383-1395, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29300840

RESUMEN

Major depressive disorder (MDD) is known to be associated with altered interactions between distributed brain regions. How these regional changes relate to the reorganization of cortical functional systems, and their modulation by antidepressant medication, is relatively unexplored. To identify changes in the community structure of cortical functional networks in MDD, we performed a multiscale community detection algorithm on resting-state functional connectivity networks of unmedicated MDD (uMDD) patients (n = 46), medicated MDD (mMDD) patients (n = 38), and healthy controls (n = 50), which yielded a spectrum of multiscale community partitions. we selected an optimal resolution level by identifying the most stable community partition for each group. uMDD and mMDD groups exhibited a similar reconfiguration of the community structure of the visual association and the default mode systems but showed different reconfiguration profiles in the frontoparietal control (FPC) subsystems. Furthermore, the central system (somatomotor/salience) and 3 frontoparietal subsystems showed strengthened connectivity with other communities in uMDD but, with the exception of 1 frontoparietal subsystem, returned to control levels in mMDD. These findings provide evidence for reconfiguration of specific cortical functional systems associated with MDD, as well as potential effects of medication in restoring disease-related network alterations, especially those of the FPC system.


Asunto(s)
Mapeo Encefálico , Corteza Cerebral/diagnóstico por imagen , Trastorno Depresivo Mayor/diagnóstico por imagen , Imagen por Resonancia Magnética , Vías Nerviosas/diagnóstico por imagen , Adolescente , Adulto , Anciano , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Corteza Cerebral/efectos de los fármacos , Trastorno Depresivo Mayor/tratamiento farmacológico , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Vías Nerviosas/efectos de los fármacos , Oxígeno/sangre , Adulto Joven
16.
Cereb Cortex ; 28(9): 3095-3114, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28981612

RESUMEN

A central goal in systems neuroscience is the parcellation of the cerebral cortex into discrete neurobiological "atoms". Resting-state functional magnetic resonance imaging (rs-fMRI) offers the possibility of in vivo human cortical parcellation. Almost all previous parcellations relied on 1 of 2 approaches. The local gradient approach detects abrupt transitions in functional connectivity patterns. These transitions potentially reflect cortical areal boundaries defined by histology or visuotopic fMRI. By contrast, the global similarity approach clusters similar functional connectivity patterns regardless of spatial proximity, resulting in parcels with homogeneous (similar) rs-fMRI signals. Here, we propose a gradient-weighted Markov Random Field (gwMRF) model integrating local gradient and global similarity approaches. Using task-fMRI and rs-fMRI across diverse acquisition protocols, we found gwMRF parcellations to be more homogeneous than 4 previously published parcellations. Furthermore, gwMRF parcellations agreed with the boundaries of certain cortical areas defined using histology and visuotopic fMRI. Some parcels captured subareal (somatotopic and visuotopic) features that likely reflect distinct computational units within known cortical areas. These results suggest that gwMRF parcellations reveal neurobiologically meaningful features of brain organization and are potentially useful for future applications requiring dimensionality reduction of voxel-wise fMRI data. Multiresolution parcellations generated from 1489 participants are publicly available (https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal).


Asunto(s)
Mapeo Encefálico/métodos , Corteza Cerebral/fisiología , Red Nerviosa/fisiología , Adolescente , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
17.
Cereb Cortex ; 28(7): 2655-2664, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29722805

RESUMEN

Converging evidence from activation, connectivity, and stimulation studies suggests that auditory brain networks are lateralized. Here we show that these findings can be at least partly explained by the asymmetric network embedding of the primary auditory cortices. Using diffusion-weighted imaging in 3 independent datasets, we investigate the propensity for left and right auditory cortex to communicate with other brain areas by quantifying the centrality of the auditory network across a spectrum of communication mechanisms, from shortest path communication to diffusive spreading. Across all datasets, we find that the right auditory cortex is better integrated in the connectome, facilitating more efficient communication with other areas, with much of the asymmetry driven by differences in communication pathways to the opposite hemisphere. Critically, the primacy of the right auditory cortex emerges only when communication is conceptualized as a diffusive process, taking advantage of more than just the topologically shortest paths in the network. Altogether, these results highlight how the network configuration and embedding of a particular region may contribute to its functional lateralization.


Asunto(s)
Corteza Auditiva/fisiología , Vías Auditivas/fisiología , Lateralidad Funcional , Estimulación Acústica , Adulto , Anciano , Corteza Auditiva/diagnóstico por imagen , Vías Auditivas/diagnóstico por imagen , Estudios de Cohortes , Comunicación , Conectoma , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Adulto Joven
18.
Neuroimage ; 180(Pt B): 406-416, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28823827

RESUMEN

Modularity is an important topological attribute for functional brain networks. Recent human fMRI studies have reported that modularity of functional networks varies not only across individuals being related to demographics and cognitive performance, but also within individuals co-occurring with fluctuations in network properties of functional connectivity, estimated over short time intervals. However, characteristics of these time-resolved functional networks during periods of high and low modularity have remained largely unexplored. In this study we investigate basic spatiotemporal properties of time-resolved networks in the high and low modularity periods during rest, with a particular focus on their spatial connectivity patterns, temporal homogeneity and test-retest reliability. We show that spatial connectivity patterns of time-resolved networks in the high and low modularity periods are represented by increased and decreased dissociation of the default mode network module from task-positive network modules, respectively. We also find that the instances of time-resolved functional connectivity sampled from within the high (respectively, low) modularity period are relatively homogeneous (respectively, heterogeneous) over time, indicating that during the low modularity period the default mode network interacts with other networks in a variable manner. We confirmed that the occurrence of the high and low modularity periods varies across individuals with moderate inter-session test-retest reliability and that it is correlated with previously-reported individual differences in the modularity of functional connectivity estimated over longer timescales. Our findings illustrate how time-resolved functional networks are spatiotemporally organized during periods of high and low modularity, allowing one to trace individual differences in long-timescale modularity to the variable occurrence of network configurations at shorter timescales.


Asunto(s)
Encéfalo/fisiología , Conectoma/métodos , Modelos Neurológicos , Red Nerviosa/fisiología , Algoritmos , Conjuntos de Datos como Asunto , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Tiempo
19.
Cereb Cortex ; 26(11): 4192-4211, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27600846

RESUMEN

Resting state fMRI (R-fMRI) is a powerful in-vivo tool for examining the functional architecture of the human brain. Recent studies have demonstrated the ability to characterize transitions between functionally distinct cortical areas through the mapping of gradients in intrinsic functional connectivity (iFC) profiles. To date, this novel approach has primarily been applied to iFC profiles averaged across groups of individuals, or in one case, a single individual scanned multiple times. Here, we used a publically available R-fMRI dataset, in which 30 healthy participants were scanned 10 times (10 min per session), to investigate differences in full-brain transition profiles (i.e., gradient maps, edge maps) across individuals, and their reliability. 10-min R-fMRI scans were sufficient to achieve high accuracies in efforts to "fingerprint" individuals based upon full-brain transition profiles. Regarding test-retest reliability, the image-wise intraclass correlation coefficient (ICC) was moderate, and vertex-level ICC varied depending on region; larger durations of data yielded higher reliability scores universally. Initial application of gradient-based methodologies to a recently published dataset obtained from twins suggested inter-individual variation in areal profiles might have genetic and familial origins. Overall, these results illustrate the utility of gradient-based iFC approaches for studying inter-individual variation in brain function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA