RESUMEN
Genome-wide association studies have implicated the ANK3 locus in bipolar disorder, a major human psychotic illness. ANK3 encodes ankyrin-G, which organizes the neuronal axon initial segment (AIS). We generated a mouse model with conditional disruption of ANK3 in pyramidal neurons of the adult forebrain (Ank-G cKO). This resulted in the expected loss of pyramidal neuron AIS voltage-gated sodium and potassium channels. There was also dramatic loss of markers of afferent GABAergic cartridge synapses, resembling the cortical microcircuitry changes in brains from psychotic patients, and suggesting disinhibition. Expression of c-fos was increased in cortical pyramidal neurons, consistent with increased neuronal activity due to disinhibition. The mice showed robust behavioral phenotypes reminiscent of aspects of human mania, ameliorated by antimania drugs lithium and valproate. Repeated social defeat stress resulted in repeated episodes of dramatic behavioral changes from hyperactivity to "depression-like" behavior, suggestive of some aspects of human bipolar disorder. Overall, we suggest that this Ank-G cKO mouse model recapitulates some of the core features of human bipolar disorder and indicates that cortical microcircuitry alterations during adulthood may be involved in pathogenesis. The model may be useful for studying disease pathophysiology and for developing experimental therapeutics.
Asunto(s)
Ancirinas/genética , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/genética , Prosencéfalo/fisiopatología , Sinapsis/patología , Animales , Trastorno Bipolar/fisiopatología , Modelos Animales de Enfermedad , Neuronas GABAérgicas/patología , Litio/farmacología , Metilfenidato/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Canales de Potasio con Entrada de Voltaje/genética , Proteínas Proto-Oncogénicas c-fyn/biosíntesis , Ácido Valproico/farmacología , Canales de Sodio Activados por Voltaje/genéticaRESUMEN
Tinnitus is a heritable, highly prevalent auditory disorder treated by multiple medical specialties. Previous GWAS indicated high genetic correlations between tinnitus and hearing loss, with little indication of differentiating signals. We present a GWAS meta-analysis, triple previous sample sizes, and expand to non-European ancestries. GWAS in 596,905 Million Veteran Program subjects identified 39 tinnitus loci, and identified genes related to neuronal synapses and cochlear structural support. Applying state-of-the-art analytic tools, we confirm a large number of shared variants, but also a distinct genetic architecture of tinnitus, with higher polygenicity and large proportion of variants not shared with hearing difficulty. Tissue-expression analysis for tinnitus infers broad enrichment across most brain tissues, in contrast to hearing difficulty. Finally, tinnitus is not only correlated with hearing loss, but also with a spectrum of psychiatric disorders, providing potential new avenues for treatment. This study establishes tinnitus as a distinct disorder separate from hearing difficulties.
Asunto(s)
Sordera , Pérdida Auditiva Provocada por Ruido , Acúfeno , Humanos , Acúfeno/diagnóstico , Acúfeno/genética , CócleaRESUMEN
During adolescence, frequent and heavy cannabis use can lead to serious adverse health effects and cannabis use disorder (CUD). Rodent models of adolescent exposure to the main psychoactive component of cannabis, delta-9-tetrahydrocannabinol (THC), mimic the behavioral alterations observed in adolescent users. However, the underlying molecular mechanisms remain largely unknown. Here, we treated female and male C57BL6/N mice with high doses of THC during early adolescence and assessed their memory and social behaviors in late adolescence. We then profiled the transcriptome of five brain regions involved in cognitive and addiction-related processes. We applied gene coexpression network analysis and identified gene coexpression modules, termed cognitive modules, that simultaneously correlated with THC treatment and memory traits reduced by THC. The cognitive modules were related to endocannabinoid signaling in the female dorsal medial striatum, inflammation in the female ventral tegmental area, and synaptic transmission in the male nucleus accumbens. Moreover, cross-brain region module-module interaction networks uncovered intra- and inter-region molecular circuitries influenced by THC. Lastly, we identified key driver genes of gene networks associated with THC in mice and genetic susceptibility to CUD in humans. This analysis revealed a common regulatory mechanism linked to CUD vulnerability in the nucleus accumbens of females and males, which shared four key drivers (Hapln4, Kcnc1, Elavl2, Zcchc12). These genes regulate transcriptional subnetworks implicated in addiction processes, synaptic transmission, brain development, and lipid metabolism. Our study provides novel insights into disease mechanisms regulated by adolescent exposure to THC in a sex- and brain region-specific manner.
Asunto(s)
Cannabis , Expresión Génica , Alucinógenos , Factores Sexuales , Adolescente , Animales , Encéfalo , Agonistas de Receptores de Cannabinoides/farmacología , Cannabis/efectos adversos , Dronabinol/metabolismo , Endocannabinoides/metabolismo , Femenino , Redes Reguladoras de Genes , Alucinógenos/farmacología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Canales de Potasio Shaw/metabolismoRESUMEN
MAOIs, a well-established class of antidepressant that operate through the inhibition of monoamine oxidase to increase available serotonin, have recently been identified as a surprisingly effective candidate for the circumvention of tumor-induced immune suppression due to their abilities to enhance antitumor T cell activity through autocrine serotonin signaling and depolarize alternatively activated tumor-associated macrophages through a reduction in reactive oxygen species production. However, this impressive class of antidepressants-turned-cancer-drugs can induce aggressive behavioral side effects when administered in immunotherapeutic doses. In this study, we investigated the possibility of avoiding these neurological side effects while simultaneously improving antitumor activity by establishing crosslinked multilamellar liposomal vesicles (cMLVs) containing the MAOI phenelzine (PLZ). Our results showed that cMLV-PLZ treatment increases antitumor efficacy in a B16-OVA mouse melanoma model compared to treatment with free phenelzine. We also found that nanoformulation resulted in the complete elimination of MAOI-related aggression. These findings suggest a promising direction for the future of MAOIs repurposed for cancer immunotherapies.
RESUMEN
Low-calorie sweetener (LCS) consumption in children has increased dramatically due to its widespread presence in the food environment and efforts to mitigate obesity through sugar replacement. However, mechanistic studies on the long-term impact of early-life LCS consumption on cognitive function and physiological processes are lacking. Here, we developed a rodent model to evaluate the effects of daily LCS consumption (acesulfame potassium, saccharin, or stevia) during adolescence on adult metabolic, behavioral, gut microbiome, and brain transcriptomic outcomes. Results reveal that habitual early-life LCS consumption impacts normal postoral glucose handling and impairs hippocampal-dependent memory in the absence of weight gain. Furthermore, adolescent LCS consumption yielded long-term reductions in lingual sweet taste receptor expression and brought about alterations in sugar-motivated appetitive and consummatory responses. While early-life LCS consumption did not produce robust changes in the gut microbiome, brain region-specific RNA-Seq analyses reveal LCS-induced changes in collagen- and synaptic signaling-related gene pathways in the hippocampus and nucleus accumbens, respectively, in a sex-dependent manner. Collectively, these results reveal that habitual early-life LCS consumption has long-lasting implications for glucoregulation, sugar-motivated behavior, and hippocampal-dependent memory in rats, which may be based in part on changes in nutrient transporter, sweet taste receptor, and central gene pathway expression.
Asunto(s)
Sacarina , Edulcorantes , Animales , Ratas , Azúcares , Glucosa , Ingestión de EnergíaRESUMEN
Psychiatric disorders are complex brain disorders with a high degree of genetic heterogeneity, affecting millions of people worldwide. Despite advances in psychiatric genetics, the underlying pathogenic mechanisms of psychiatric disorders are still largely elusive, which impedes the development of novel rational therapies. There has been accumulating evidence suggesting that the genetics of complex disorders can be viewed through an omnigenic lens, which involves contextualizing genes in highly interconnected networks. Thus, applying network-based multi-omics integration methods could cast new light on the pathophysiology of psychiatric disorders. In this review, we first provide an overview of the recent advances in psychiatric genetics and highlight gaps in translating molecular associations into mechanistic insights. We then present an overview of network methodologies and review previous applications of network methods in the study of psychiatric disorders. Lastly, we describe the potential of such methodologies within a multi-tissue, multi-omics approach, and summarize the future directions in adopting diverse network approaches.
Asunto(s)
Redes Reguladoras de Genes/genética , Trastornos Mentales/genética , Trastornos Mentales/patología , Genómica/métodos , Humanos , Metabolómica/métodos , Proteómica/métodosRESUMEN
Social interactions and relationships are often rewarding, but the neural mechanisms through which social interaction drives positive experience remain poorly understood. In this study, we developed an automated operant conditioning system to measure social reward in mice and found that adult mice of both sexes display robust reinforcement of social interaction. Through cell-type-specific manipulations, we identified a crucial role for GABAergic neurons in the medial amygdala (MeA) in promoting the positive reinforcement of social interaction. Moreover, MeA GABAergic neurons mediate social reinforcement behavior through their projections to the medial preoptic area (MPOA) and promote dopamine release in the nucleus accumbens. Finally, activation of this MeA-to-MPOA circuit can robustly overcome avoidance behavior. Together, these findings establish the MeA as a key node for regulating social reward in both sexes, providing new insights into the regulation of social reward beyond the classic mesolimbic reward system.
Asunto(s)
Amígdala del Cerebelo/fisiología , Condicionamiento Operante/fisiología , Hipotálamo/fisiología , Red Nerviosa/fisiología , Recompensa , Conducta Social , Amígdala del Cerebelo/química , Animales , Femenino , Hipotálamo/química , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Red Nerviosa/química , Optogenética/métodos , Refuerzo en PsicologíaRESUMEN
Single-cell RNA sequencing offers a promising opportunity for probing cell types mediating specific behavioral functions and the underlying molecular programs. However, this has been hampered by a long-standing issue in transcriptional profiling of dissociated cells, specifically the transcriptional perturbations that are artificially induced during conventional whole-cell dissociation procedures. Here, we develop Act-seq, which minimizes artificially induced transcriptional perturbations and allows for faithful detection of both baseline transcriptional profiles and acute transcriptional changes elicited by behavior/experience-driven activity. Using Act-seq, we provide the first detailed molecular taxonomy of distinct cell types in the amygdala. We further show that Act-seq robustly detects seizure-induced acute gene expression changes in multiple cell types, revealing cell-type-specific activation profiles. Furthermore, we find that acute stress preferentially activates neuronal subpopulations that express the neuropeptide gene Cck. Act-seq opens the way for linking physiological stimuli with acute transcriptional dynamics in specific cell types in diverse complex tissues.