Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Environ Manage ; 251: 109511, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31539703

RESUMEN

Marine habitats are nowadays strongly affected by human activities, while for many species the consequences of these impacts are still unclear. The red-throated diver (Gavia stellata) has been reported to be sensitive to ship traffic and other anthropogenic pressures and is consequently of high conservation concern. We studied red-throated divers in the German Bight (North Sea) using satellite telemetry and digital aerial surveys with the aim of assessing effects of ship traffic on the distribution and movements of this species during the non-breeding season. Data from the automatic identification system of ships (AIS) were intersected with bird data and allowed detailed spatial and temporal analyses. During the study period, ship traffic was present throughout the main distribution area of divers. Depending on impact radius, only small areas existed in which ship traffic was present on less than 20% of the days. Ship traffic was dominated by fishing vessels and cargo ships, but also wind farm-related ships were frequently recorded. Red-throated divers were more abundant in areas with no or little concurrent ship traffic. Analysis of aerial survey data revealed strong effects of ship speed on divers: in areas with vessels sailing at high speed only a slow resettlement of the area was observed after the disturbance, while in areas with vessels sailing at medium speed the resettlement was more rapid during the observed time period of 7 hours. Data from satellite-tracking of divers suggest that large relocation distances of individuals are related to disturbance by ships which often trigger birds to take flight. Effective measures to reduce disturbance could include channeled traffic in sensitive areas, as well as speed limits for ships traveling within the protected marine area.


Asunto(s)
Ecosistema , Navíos , Animales , Aves , Movimiento , Mar del Norte
2.
Glob Chang Biol ; 23(6): 2179-2196, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28132408

RESUMEN

Benthic-pelagic coupling is manifested as the exchange of energy, mass, or nutrients between benthic and pelagic habitats. It plays a prominent role in aquatic ecosystems, and it is crucial to functions from nutrient cycling to energy transfer in food webs. Coastal and estuarine ecosystem structure and function are strongly affected by anthropogenic pressures; however, there are large gaps in our understanding of the responses of inorganic nutrient and organic matter fluxes between benthic habitats and the water column. We illustrate the varied nature of physical and biological benthic-pelagic coupling processes and their potential sensitivity to three anthropogenic pressures - climate change, nutrient loading, and fishing - using the Baltic Sea as a case study and summarize current knowledge on the exchange of inorganic nutrients and organic material between habitats. Traditionally measured benthic-pelagic coupling processes (e.g., nutrient exchange and sedimentation of organic material) are to some extent quantifiable, but the magnitude and variability of biological processes are rarely assessed, preventing quantitative comparisons. Changing oxygen conditions will continue to have widespread effects on the processes that govern inorganic and organic matter exchange among habitats while climate change and nutrient load reductions may have large effects on organic matter sedimentation. Many biological processes (predation, bioturbation) are expected to be sensitive to anthropogenic drivers, but the outcomes for ecosystem function are largely unknown. We emphasize how improved empirical and experimental understanding of benthic-pelagic coupling processes and their variability are necessary to inform models that can quantify the feedbacks among processes and ecosystem responses to a changing world.


Asunto(s)
Cambio Climático , Ecosistema , Peces , Animales , Cadena Alimentaria
3.
Proc Natl Acad Sci U S A ; 111(14): 5271-6, 2014 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-24639512

RESUMEN

Recent research on ocean health has found large predator abundance to be a key element of ocean condition. Fisheries can impact large predator abundance directly through targeted capture and indirectly through incidental capture of nontarget species or bycatch. However, measures of the global nature of bycatch are lacking for air-breathing megafauna. We fill this knowledge gap and present a synoptic global assessment of the distribution and intensity of bycatch of seabirds, marine mammals, and sea turtles based on empirical data from the three most commonly used types of fishing gears worldwide. We identify taxa-specific hotspots of bycatch intensity and find evidence of cumulative impacts across fishing fleets and gears. This global map of bycatch illustrates where data are particularly scarce--in coastal and small-scale fisheries and ocean regions that support developed industrial fisheries and millions of small-scale fishers--and identifies fishing areas where, given the evidence of cumulative hotspots across gear and taxa, traditional species or gear-specific bycatch management and mitigation efforts may be necessary but not sufficient. Given the global distribution of bycatch and the mitigation success achieved by some fleets, the reduction of air-breathing megafauna bycatch is both an urgent and achievable conservation priority.


Asunto(s)
Aves , Mamíferos , Biología Marina , Tortugas , Animales , Biodiversidad
4.
Biol Lett ; 12(12)2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28003522

RESUMEN

Monitoring of bird migration at marine wind farms has a short history, and unsurprisingly most studies have focused on the potential for collisions. Risk for population impacts may exist to soaring migrants such as raptors with K-strategic life-history characteristics. Soaring migrants display strong dependence on thermals and updrafts and an affinity to land areas and islands during their migration, a behaviour that creates corridors where raptors move across narrow straits and sounds and are attracted to islands. Several migration corridors for soaring birds overlap with the development regions for marine wind farms in NW Europe. However, no empirical data have yet been available on avoidance or attraction rates and behavioural reactions of soaring migrants to marine wind farms. Based on a post-construction monitoring study, we show that all raptor species displayed a significant attraction behaviour towards a wind farm. The modified migratory behaviour was also significantly different from the behaviour at nearby reference sites. The attraction was inversely related to distance to the wind farm and was primarily recorded during periods of adverse wind conditions. The attraction behaviour suggests that migrating raptor species are far more at risk of colliding with wind turbines at sea than hitherto assessed.


Asunto(s)
Migración Animal , Vuelo Animal , Centrales Eléctricas , Rapaces/fisiología , Viento , Animales , Dinamarca , Europa (Continente) , Océanos y Mares , Tecnología de Sensores Remotos
5.
Microorganisms ; 10(11)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36363741

RESUMEN

Haemosporida, vector-transmitted blood parasites, can have various effects and may also exert selection pressures on their hosts. In this study we analyse the presence of Haemosporida in a previously unstudied migratory seabird species, the red-throated diver Gavia stellata. Red-throated divers were sampled during winter and spring in the eastern German Bight (North Sea). We used molecular methods and data from a related tracking study to reveal (i) if red-throated divers are infected with Haemosporida of the genera Leucocytozoon, Plasmodium and Haemoproteus, and (ii) how infection and prevalence are linked with the breeding regions of infected individuals. Divers in this study were assigned to western Palearctic breeding grounds, namely Greenland, Svalbard, Norway and Arctic Russia. We found a prevalence of Leucocytozoon of 11.0% in all birds sampled (n = 45), of 33.0% in birds breeding in Norway (n = 3) and of 8.3% in birds breeding in Arctic Russia (n = 25). For two birds that were infected no breeding regions could be assigned. We identified two previously unknown lineages, one each of Plasmodium and Leucocytozoon. Haemosporida have not been detected in birds from Greenland (n = 2) and Svalbard (n = 2). In summary, this study presents the first record of Haemosporida in red-throated divers and reports a new lineage of each, Plasmodium and Leucocytozoon GAVSTE01 and GAVSTE02, respectively.

6.
Proc Biol Sci ; 278(1722): 3191-200, 2011 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-21429921

RESUMEN

Fisheries bycatch is a recognized threat to marine megafauna. Addressing bycatch of pelagic species however is challenging owing to the dynamic nature of marine environments and vagility of these organisms. In order to assess the potential for species to overlap with fisheries, we propose applying dynamic habitat models to determine relative probabilities of species occurrence for specific oceanographic conditions. We demonstrate this approach by modelling habitats for Laysan (Phoebastria immutabilis) and black-footed albatrosses (Phoebastria nigripes) using telemetry data and relating their occurrence probabilities to observations of Hawaii-based longline fisheries in 1997-2000. We found that modelled habitat preference probabilities of black-footed albatrosses were high within some areas of the fishing range of the Hawaiian fleet and such preferences were important in explaining bycatch occurrence. Conversely, modelled habitats of Laysan albatrosses overlapped little with Hawaii-based longline fisheries and did little to explain the bycatch of this species. Estimated patterns of albatross habitat overlap with the Hawaiian fleet corresponded to bycatch observations: black-footed albatrosses were more frequently caught in this fishery despite being 10 times less abundant than Laysan albatrosses. This case study demonstrates that dynamic habitat models based on telemetry data may help to project interactions with pelagic animals relative to environmental features and that such an approach can serve as a tool to guide conservation and management decisions.


Asunto(s)
Aves/fisiología , Ecosistema , Explotaciones Pesqueras/estadística & datos numéricos , Modelos Biológicos , Animales , Simulación por Computador , Conservación de los Recursos Naturales/métodos , Explotaciones Pesqueras/métodos , Mortalidad , Océano Pacífico , Dinámica Poblacional , Especificidad de la Especie , Telemetría
7.
Mov Ecol ; 9(1): 61, 2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34895360

RESUMEN

BACKGROUND: The timing of migration for herbivorous migratory birds is thought to coincide with spring phenology as emerging vegetation supplies them with the resources to fuel migration, and, in species with a capital breeding strategy also provides individuals with energy for use on the breeding grounds. Individuals with very long migration distances might however have to trade off between utilising optimal conditions en route and reaching the breeding grounds early, potentially leading to them overtaking spring on the way. Here, we investigate whether migration distance affects how closely individually tracked Eurasian wigeons follow spring phenology during spring migration. METHODS: We captured wigeons in the Netherlands and Lithuania and tracked them throughout spring migration to identify staging sites and timing of arrival. Using temperature-derived indicators of spring phenology, we investigated how maximum longitude reached and migration distance affected how closely wigeons followed spring. We further estimated the impact of tagging on wigeon migration by comparing spring migratory timing between tracked individuals and ring recovery data sets. RESULTS: Wigeons migrated to locations between 300 and 4000 km from the capture site, and migrated up to 1000 km in a single day. We found that wigeons migrating to more north-easterly locations followed spring phenology more closely, and increasingly so the greater distance they had covered during migration. Yet we also found that despite tags equalling only around 2% of individual's body mass, individuals were on average 11-12 days slower than ring-marked individuals from the same general population. DISCUSSION: Overall, our results suggest that migratory strategy can vary dependent on migration distance within species, and even within the same migratory corridor. Individual decisions thus depend not only on environmental cues, but potentially also trade-offs made during later life-history stages.

8.
Mar Environ Res ; 160: 104989, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32907727

RESUMEN

Expansion of offshore wind energy is vital for the reduction of CO2 emissions. However, offshore wind farms may negatively impact the environment without proper planning. Here we assess the robustness of the conclusions of earlier studies that the strictly protected red-throated diver, Gavia stellata, is strongly displaced from wind farms in the German Bight (North Sea). We modelled the distribution of divers based on two independent data sets, digital aerial surveys and satellite telemetry, in relation to the dynamic offshore environment and anthropogenic pressures. Both data types found that divers were strongly displaced from wind farms in suitable habitat. The displacement effect gradually decreased with distance from the wind farms (being very strong up to 5 km away), but a significant effect could be detected up to 10-15 km away. The telemetry data further indicated that the displacement distance decreased with decreasing visibility. The displacement distance was also shorter during the day than during the night, potentially as a response to aviation and navigation lights of the wind farms. These findings should be taken into consideration in marine spatial planning to avoid cumulative impacts on red-throated diver populations.


Asunto(s)
Aves , Fuentes Generadoras de Energía , Telemetría , Viento , Animales , Mar del Norte , Encuestas y Cuestionarios
9.
Conserv Biol ; 23(3): 608-16, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19245491

RESUMEN

Many populations of marine megafauna, including seabirds, sea turtles, marine mammals, and elasmobranchs, have declined in recent decades due largely to anthropogenic mortality. To successfully conserve these long-lived animals, efforts must be prioritized according to feasibility and the degree to which they address threats with the highest relative impacts on population dynamics. Recently, Wilcox and Donlan (2007, Frontiers in Ecology and the Environment) and Donlan and Wilcox (2008, Biological Invasions) proposed a conservation strategy of "compensatory mitigation" in which fishing industries offset bycatch of seabirds and sea turtles by funding eradication of invasive mammalian predators from the terrestrial reproductive sites of these marine animals. Although this is a creative and conceptually compelling approach, we find it flawed as a conservation tool because it has narrow applicability among marine megafauna, it does not address the most pervasive threats to marine megafauna, and it is logistically and financially infeasible. Invasive predator eradication does not adequately offset the most pressing threat to most marine megafauna populations--fisheries bycatch. For seabird populations, fisheries bycatch and invasive predators infrequently are overlapping threats. Invasive predators have limited population-level impacts on sea turtles and marine mammals and no impacts on elasmobranchs, all of which are threatened by bycatch. Implementing compensatory mitigation in marine fisheries is unrealistic due to inadequate monitoring, control, and surveillance in the majority of fleets. Therefore, offsetting fisheries bycatch with eradication of invasive predators would be less likely to reverse population declines than reducing bycatch. We recommend that efforts to mitigate bycatch in marine capture fisheries should address multiple threats to sensitive bycatch species groups, but these efforts should first institute proven bycatch avoidance and reduction methods before considering compensatory mitigation.


Asunto(s)
Aves , Conservación de los Recursos Naturales/métodos , Explotaciones Pesqueras/métodos , Explotaciones Pesqueras/normas , Especies Introducidas , Biología Marina , Tortugas , Animales , Conservación de los Recursos Naturales/economía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA