Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 21(1): 300, 2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34187360

RESUMEN

BACKGROUND: A major limiting factor for plant growth is the aluminum (Al) toxicity in acidic soils, especially in tropical regions. The exclusion of Al from the root apex through root exudation of organic acids such as malate and citrate is one of the most ubiquitous tolerance mechanisms in the plant kingdom. Two families of anion channels that confer Al tolerance are well described in the literature, ALMT and MATE family. RESULTS: In this study, sugarcane plants constitutively overexpressing the Sorghum bicolor MATE gene (SbMATE) showed improved tolerance to Al when compared to non-transgenic (NT) plants, characterized by sustained root growth and exclusion of aluminum from the root apex based on the result obtained with hematoxylin staining. In addition, genome-wide analysis of the recently released sugarcane genome identified 11 ALMT genes and molecular studies showed potential new targets for aluminum tolerance. CONCLUSIONS: Our results indicate that the transgenic plants overexpressing the Sorghum bicolor MATE has an improved tolerance to Al. The expression profile of ALMT genes revels potential candidate genes to be used has an alternative for agricultural expansion in Brazil and other areas with aluminum toxicity in poor and acid soils.


Asunto(s)
Aluminio/metabolismo , Proteínas de Transporte de Anión/genética , Genes de Plantas/genética , Proteínas de Plantas/genética , Saccharum/genética , Aluminio/toxicidad , Proteínas de Transporte de Anión/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/fisiología , Estudio de Asociación del Genoma Completo , Filogenia , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Saccharum/metabolismo , Sorghum/genética , Sorghum/metabolismo , Transcriptoma
2.
Methods Mol Biol ; 1864: 49-65, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30415328

RESUMEN

Setaria viridis is an emerging model for C4 species, and it is an important model to validate some genes for further C4 crop transformation, such as sugarcane, maize, and wheat. Here, we describe two protocols for stable transformation of S. viridis mediated by Agrobacterium tumefaciens with three different reporter genes and two selectable markers. Routine transformation efficiency reaching 29% was achieved using embryogenic callus in S. viridis (accession A10.1). Alternatively, we developed a transformation method by floral dip with 0.6% efficiency. The developed protocols could be useful for genetic and genomics studies of important food-feed-fiber-fuel C4 crops.


Asunto(s)
Agrobacterium tumefaciens/genética , Plantas Modificadas Genéticamente/genética , Setaria (Planta)/genética , Transformación Bacteriana/genética , Productos Agrícolas/genética , Genes Reporteros/genética , Genómica/métodos , Proteínas de Plantas/genética , Regiones Promotoras Genéticas/genética , Zea mays/genética
3.
Sci Rep ; 9(1): 4028, 2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30858491

RESUMEN

Abscisic acid (ABA) is an essential phytohormone that regulates growth, development and adaptation of plants to environmental stresses. In Arabidopsis and other higher plants, ABA signal transduction involves three core components namely PYR/PYL/RCAR ABA receptors (PYLs), type 2C protein phosphatases (PP2Cs) and class III SNF-1-related protein kinase 2 (SnRK2s). In the present study, we reported the identification and characterization of the core ABA signaling components in Setaria viridis, an emerging model plant for cereals and feedstock crops presenting C4 metabolism, leading to the identification of eight PYL (SvPYL1 to 8), twelve PP2C (SvPP2C1 to 12) and eleven SnRK2 (SvSnRK2.1 through SvSnRK2.11) genes. In order to study the expression profiles of these genes, two different S. viridis accessions (A10.1 and Ast-1) were submitted to drought, salinity and cold stresses, in addition to application of exogenous ABA. Differential gene expression profiles were observed in each treatment and plant genotype, demonstrating variations of ABA stress responses within the same species. These differential responses to stresses were also assessed by physiological measurements such as photosynthesis, stomatal conductance and transpiration rate. This study allows a detailed analysis of gene expression of the core ABA signaling components in Setaria viridis submitted to different treatments and provides suitable targets for genetic engineering of C4 plants aiming tolerance to abiotic stresses.


Asunto(s)
Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Setaria (Planta)/metabolismo , Adaptación Fisiológica , Respuesta al Choque por Frío/fisiología , Sequías , Fotosíntesis/fisiología , Transpiración de Plantas/fisiología , Estrés Salino/fisiología , Setaria (Planta)/genética
4.
Biotechnol Biofuels ; 12: 111, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31080518

RESUMEN

BACKGROUND: Sugarcane (Saccharum spp.) covers vast areas of land (around 25 million ha worldwide), and its processing is already linked into infrastructure for producing bioethanol in many countries. This makes it an ideal candidate for improving composition of its residues (mostly cell walls), making them more suitable for cellulosic ethanol production. In this paper, we report an approach to improving saccharification of sugarcane straw by RNAi silencing of the recently discovered BAHD01 gene responsible for feruloylation of grass cell walls. RESULTS: We identified six BAHD genes in the sugarcane genome (SacBAHDs) and generated five lines with substantially decreased SacBAHD01 expression. To find optimal conditions for determining saccharification of sugarcane straw, we tried multiple combinations of solvent and temperature pretreatment conditions, devising a predictive model for finding their effects on glucose release. Under optimal conditions, demonstrated by Organosolv pretreatment using 30% ethanol for 240 min, transgenic lines showed increases in saccharification efficiency of up to 24%. The three lines with improved saccharification efficiency had lower cell-wall ferulate content but unchanged monosaccharide and lignin compositions. CONCLUSIONS: The silencing of SacBAHD01 gene and subsequent decrease of cell-wall ferulate contents indicate a promising novel biotechnological approach for improving the suitability of sugarcane residues for cellulosic ethanol production. In addition, the Organosolv pretreatment of the genetically modified biomass and the optimal conditions for the enzymatic hydrolysis presented here might be incorporated in the sugarcane industry for bioethanol production.

6.
Curr Protoc Plant Biol ; 2(3): 221-239, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31725972

RESUMEN

Sugarcane (Saccharum spp.) is a monocotyledonous semi-perennial C4 grass of the Poaceae family. Its capacity to accumulate high content of sucrose and biomass makes it one of the most important crops for sugar and biofuel production. Conventional methods of sugarcane breeding have shown several limitations due to its complex polyploid and aneuploid genome. However, improvement by biotechnological engineering is currently the most promising alternative to introduce economically important traits. In this work, we present an improved protocol for Agrobacterium tumefaciens-mediated transformation of commercial sugarcane hybrids using immature top stalk-derived embryogenic callus cultures. The callus cultures are transformed with preconditioned A. tumefaciens carrying a binary vector that encodes expression cassettes for a gene of interest and the bialaphos resistance gene (bar confers resistance to glufosinate-ammonium herbicide). This protocol has been used to successfully transform a commercial sugarcane cultivar, SP80-3280, highlighting: (i) reduced recalcitrance and oxidation; (ii) high yield of embryogenic callus; (iii) improved selection; and (iv) shoot regeneration and rooting of the transformed plants. Altogether, these improvements generated a transformation efficiency of 2.2%. This protocol provides a reliable tool for a routine procedure for sugarcane improvement by genetic engineering. © 2017 by John Wiley & Sons, Inc.

7.
Sci Rep ; 6: 28348, 2016 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-27321675

RESUMEN

Real-time PCR (RT-qPCR) expression analysis is a powerful analytical technique, but reliable results depend on the use of stable reference genes for proper normalization. This study proposed to test the expression stability of 13 candidate reference genes in Setaria viridis, a monocot species recently proposed as a new C4 model plant. Gene expression stability of these genes was assayed across different tissues and developmental stages of Setaria and under drought or aluminum stress. In general, our results showed Protein Kinase, RNA Binding Protein and SDH as the most stable genes. Moreover, pairwise analysis showed that two reference genes were sufficient to normalize the gene expression data under each condition. By contrast, GAPDH and ACT were the least stably expressed genes tested. Validation of suitable reference genes was carried out to profile the expression of P5CS and GolS during abiotic stress. In addition, normalization of gene expression of SuSy, involved in sugar metabolism, was assayed in the developmental dataset. This study provides a list of reliable reference genes for transcript normalization in S. viridis in different tissues and stages of development and under abiotic stresses, which will facilitate genetic studies in this monocot model plant.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Reacción en Cadena en Tiempo Real de la Polimerasa , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Estrés Fisiológico/genética , Algoritmos , Aluminio/química , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Biotechnol Biofuels ; 9: 153, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27453728

RESUMEN

BACKGROUND: Second-generation ethanol (2G-bioethanol) uses lignocellulosic feedstocks for ethanol production. Sugarcane is one among the most suitable crops for biofuel production. Its juice is extracted for sugar production, while sugarcane bagasse, straw, and senescing leaves are considered industrial waste. Senescence is the age-dependent deterioration of plant cells, ultimately leading to cell death and completion of the plant life cycle. Because senescing leaves may also be used for biofuel production, understanding the process of natural senescence, including remobilization of nutrients and its effect on cell walls can provide useful information for 2G-bioethanol production from sugarcane leaves. RESULTS: The natural senescence process in leaves of the commercial sugarcane cultivar RB867515 was investigated. Senescence was characterized by strong reduction in photosynthetic pigments content, remobilization of the nutrients N, P, K, B, Cu, Fe, and Zn, and accumulation of Ca, S, Mg, B, Mn, and Al. No significant changes in the cell-wall composition occurred, and only small changes in the expression of cell wall-related genes were observed, suggesting that cell walls are preserved during senescence. Senescence-marker genes, such as SAG12-like and XET-like genes, were also identified in sugarcane and found to be highly expressed. CONCLUSIONS: Our study on nutrient remobilization under senescence in a vigorous sugarcane cultivar can contribute to the understanding on how nutrient balance in a high-yielding crop is achieved. In general, neutral monosaccharide profile did not change significantly with leaf senescence, suggesting that senescing leaves of sugarcane can be as a feedstock for biofuel production using pretreatments established for non-senescing leaves without additional efforts. Based on our findings, the potential biotechnological applications for the improvement of sugarcane cultivars are discussed.

9.
Plant Sci ; 221-222: 59-68, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24656336

RESUMEN

Drought is one of the most challenging agricultural issues limiting sustainable sugarcane production and, in some cases, yield losses caused by drought are nearly 50%. DREB proteins play vital regulatory roles in abiotic stress responses in plants. The transcription factor DREB2A interacts with a cis-acting DRE sequence to activate the expression of downstream genes that are involved in drought-, salt- and heat-stress response in Arabidopsis thaliana. In the present study, we evaluated the effects of stress-inducible over-expression of AtDREB2A CA on gene expression, leaf water potential (ΨL), relative water content (RWC), sucrose content and gas exchanges of sugarcane plants submitted to a four-days water deficit treatment in a rhizotron-grown root system. The plants were also phenotyped by scanning the roots and measuring morphological parameters of the shoot. The stress-inducible expression of AtDREB2A CA in transgenic sugarcane led to the up-regulation of genes involved in plant response to drought stress. The transgenic plants maintained higher RWC and ΨL over 4 days after withholding water and had higher photosynthetic rates until the 3rd day of water-deficit. Induced expression of AtDREB2A CA in sugarcane increased sucrose levels and improved bud sprouting of the transgenic plants. Our results indicate that induced expression of AtDREB2A CA in sugarcane enhanced its drought tolerance without biomass penalty.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Saccharum/genética , Sacarosa/metabolismo , Factores de Transcripción/genética , Proteínas de Arabidopsis/metabolismo , Transpiración de Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas , Saccharum/metabolismo , Factores de Transcripción/metabolismo , Zea mays/genética , Zea mays/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA