Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Invest New Drugs ; 38(3): 662-674, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31264068

RESUMEN

The aim of this study was to further evaluate the antitumoral effect of (PhSe)2-loaded polymeric nanocapsules (NC (PhSe)2) against a resistant melanoma cell line (SK-Mel-103) and develop a xanthan gum-based hydrogel intending the NC (PhSe)2 cutaneous application. For the in vitro evaluation, cells were incubated with free (PhSe)2 or NC (PhSe)2 (0.7-200 µM) and after 48 h the MTT assay, propidium iodide uptake (necrosis marker) and nitrite levels were assessed. The hydrogels were developed by thickening of the NC (PhSe)2 suspension or (PhSe)2 solution with xanthan gum and characterized in terms of average diameter, polydispersity index, pH, drug content, spreadability, rheological profiles and in vitro permeation in human skin. The results showed that NC (PhSe)2 provided a superior antitumoral effect in comparison to free (PhSe)2 (IC50 value of 47.43 µM and 65.05 µM, respectively) and increased the nitrite content. Both compound forms induced propidium iodide uptake, suggesting a necrosis-related pathway could be involved in the cytotoxic action of (PhSe)2. All hydrogels showed pH values around 7, drug content close to the theoretical values (5 mg/g) and mean diameter in the nanometric range. Besides, formulations were classified as non-Newtonian flow with pseudoplastic behavior and suitable spreadability factor. Skin permeation studies revealed that the compound content was higher for the nano-based hydrogel in the dermis layer, demonstrating its superior permeation, achieved by the compound encapsulation. It is the first report on an adequate formulation development for cutaneous application of NC (PhSe)2 that could be used as an adjuvant treatment in melanoma therapy.


Asunto(s)
Antineoplásicos/farmacología , Derivados del Benceno/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Melanoma Experimental/tratamiento farmacológico , Nanocápsulas/química , Compuestos de Organoselenio/farmacología , Polisacáridos Bacterianos/química , Animales , Antineoplásicos/química , Derivados del Benceno/química , Línea Celular , Humanos , Ratones , Compuestos de Organoselenio/química , Permeabilidad/efectos de los fármacos , Polímeros/química
2.
AAPS PharmSciTech ; 21(8): 307, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33151442

RESUMEN

Diphenyl diselenide [(PhSe)2] is a pleiotropic pharmacological agent, but it has low aqueous solubility. The nanoencapsulation of (PhSe)2 allowed the preparation of an aqueous formulation as well as potentiated its in vitro antitumor effect and the effectiveness in a preclinical model of glioblastoma when administered by the intragastric route. Thus, aiming at maximizing the therapeutic potential of (PhSe)2, the present study designed a pegylated-formulation intending to intravenous administration of the (PhSe)2 as a new approach for glioma therapy. The poly(Ɛ-caprolactone) nanocapsules containing (PhSe)2 were physically coated with polyethyleneglycol (PEG) using the preformed polymer interfacial deposition technique and evaluated through physicochemical, morphological, spectroscopic, and thermal characteristics. Hemocompatibility was determined by the in vitro hemolysis test and cytotoxicity assays were performed in astrocytes and glioma C6 cells (10-100 µM). The pegylated-nanocapsules had an average diameter of 218 ± 25 nm, polydispersity index of 0.164 ± 0.046, zeta potential of - 8.1 ± 1.6 mV, pH 6.0 ± 0.09, (PhSe)2 content of 102.00 ± 3.57%, and encapsulation efficiency around 98%. Besides, the (PhSe)2 pegylated-nanocapsules were spherical, presented absence of chemical interaction among the constituents, and showed higher thermal stability than the non-encapsulated materials. PEG-coated nanocapsules did not cause hemolytic effect while formulations without PEG induced a hemolysis rate above 10%. Moreover, pegylated-nanocapsules had superior in vitro antiglioma effect in comparison to free compound (IC50: 24.10 µM and 74.83 µM, respectively). Therefore, the (PhSe)2-loaded pegylated-nanocapsule suspensions can be considered a hemocompatible formulation for the glioma treatment by the intravenous route.


Asunto(s)
Antineoplásicos/administración & dosificación , Derivados del Benceno/administración & dosificación , Materiales Biocompatibles , Glioma/tratamiento farmacológico , Nanocápsulas/química , Compuestos de Organoselenio/administración & dosificación , Polietilenglicoles/química , Animales , Antineoplásicos/química , Astrocitos/efectos de los fármacos , Derivados del Benceno/química , Compuestos de Organoselenio/química , Solubilidad
3.
Cell Mol Neurobiol ; 39(6): 783-797, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31115733

RESUMEN

Among gliomas types, glioblastoma is considered the most malignant and the worst form of primary brain tumor. It is characterized by high infiltration rate and great angiogenic capacity. The presence of an inflammatory microenvironment contributes to chemo/radioresistance, resulting in poor prognosis for patients. Recent data show that thiazolidinones have a wide range of pharmacological properties, including anti-inflammatory and antiglioma activities. Nanocapsules of biodegradable polymers become an alternative to cancer treatment since they provide targeted drug delivery and could overcome blood-brain barrier. Therefore, here we investigated the in vitro antiglioma activity and the potential in vivo toxicity of 2- (2-methoxyphenyl) -3- ((piperidin-1-yl) ethyl) thiazolidin-4-one-loaded polymeric nanocapsules (4L-N). Nanocapsules were prepared and characterized in terms of particle size, polydispersity index, zeta potential, pH, molecule content and encapsulation efficiency. Treatment with 4L-N selectively decreased human U138MG and rat C6 cell lines viability and proliferation, being even more efficient than the free-form molecule (4L). In addition, 4L-N did not promote toxicity to primary astrocytes. We further demonstrated that the treatment with sub-therapeutic dose of 4L-N did not alter weight, neither resulted in mortality, toxicity or peripheral damage to Wistar rats. Finally, 4L as well as 4L-N did not alter makers of oxidative damage, such as TBARS levels and total sulfhydryl content, and did not change antioxidant enzymes SOD and CAT activity in liver and brain of treated rats. Taken together, these data indicate that the nanoencapsulation of 4L has potentiated its antiglioma effect and does not cause in vivo toxicity.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Nanocápsulas/química , Piperidinas/toxicidad , Piperidinas/uso terapéutico , Polímeros/química , Tiazolidinas/toxicidad , Tiazolidinas/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Biomarcadores de Tumor/sangre , Encéfalo/efectos de los fármacos , Encéfalo/patología , Neoplasias Encefálicas/sangre , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Liberación de Fármacos , Glioma/sangre , Glioma/patología , Humanos , Luz , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Estrés Oxidativo/efectos de los fármacos , Piperidinas/síntesis química , Piperidinas/química , Polímeros/síntesis química , Ratas Wistar , Tiazolidinas/síntesis química , Tiazolidinas/química , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Pruebas de Toxicidad , Pérdida de Peso/efectos de los fármacos
4.
J Membr Biol ; 251(2): 247-261, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29417170

RESUMEN

Rapanea ferruginea antioxidant and antitumoral properties were not explored before in literature. This study aimed to investigate these biological activities for the R. ferruginea leaf extract and correlate them with its phenolic content and influence in biological membrane dynamics. Thus, in this study, anti/pro-oxidative properties of R. ferruginea leaf extract by in vitro DPPH and TBARS assays, with respect to the free radical reducing potential and to its activity regarding membrane free radical-induced peroxidation, respectively. Furthermore, preliminary tests related to the extract effect on in vitro glioma cell viability were also performed. In parallel, the phenolic content was detected by HPLC-DAD and included syringic and trans-cinnamic acids, quercetrin, catechin, quercetin, and gallic acid. In an attempt to correlate the biological activity of R. ferruginea extract and its effect on membrane dynamics, the molecular interaction between the extract and a liposomal model with natural-sourced phospholipids was investigated. Location and changes in vibrational, rotational, and translational lipid motions, as well as in the phase state of liposomes, induced by R. ferruginea extract, were monitored by Fourier-transform infrared spectroscopy, nuclear magnetic resonance, differential scanning calorimetry, and UV-visible spectroscopy. In its free form, the extract showed promising in vitro antioxidant properties. Free-form extract (at 1000µ g/mL) exposure reduced glioma cell in vitro viability in 40%, as evidenced by MTT tests. Pro-oxidant behavior was observed when the extract was loaded into liposomes. A 70.8% cell viability reduction was achieved with 500 µg/mL of liposome-loaded extract. The compounds of R. ferruginea extract ordered liposome interface and disorder edits a polar region. Phenolic content, as well as membrane interaction and modulation may have an important role in the oxidative and antitumoral activities of the R. ferruginea leaf extract.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Myrsine/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antioxidantes/metabolismo , Catequina/farmacología , Línea Celular Tumoral , Ácido Gálico/farmacología , Glioma/metabolismo , Humanos , Liposomas/química , Oxidación-Reducción/efectos de los fármacos , Fenol/química , Quercetina/análogos & derivados , Quercetina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
5.
Cell Mol Neurobiol ; 38(5): 1107-1121, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29556871

RESUMEN

Altered astrocytic function is a contributing factor to the development of neurological diseases and neurodegeneration. Berry fruits exert neuroprotective effects by modulating pathways involved in inflammation, neurotransmission, and oxidative stress. The aim of this study was to examine the effects of the lingonberry extract on cellular viability and oxidative stress in astrocytes exposed to lipopolysaccharide (LPS). In the reversal protocol, primary astrocytic cultures were first exposed to 1 µg/mL LPS for 3 h and subsequently treated with lingonberry extract (10, 30, 50, and 100 µg/mL) for 24 and 48 h. In the prevention protocol, exposure to the lingonberry extract was performed before treatment with LPS. In both reversal and prevention protocols, the lingonberry extracts, from 10 to 100 µg/mL, attenuated LPS-induced increase in reactive oxygen species (around 55 and 45%, respectively, P < 0.01), nitrite levels (around 50 and 45%, respectively, P < 0.05), and acetylcholinesterase activity (around 45 and 60%, respectively, P < 0.05) in astrocytic cultures at 24 and 48 h. Also, in both reversal and prevention protocols, the lingonberry extract also prevented and reversed the LPS-induced decreased cellular viability (around 45 and 90%, respectively, P < 0.05), thiol content (around 55 and 70%, respectively, P < 0.05), and superoxide dismutase activity (around 50 and 145%, respectively, P < 0.05), in astrocytes at both 24 and 48 h. Our findings suggested that the lingonberry extract exerted a glioprotective effect through an anti-oxidative mechanism against LPS-induced astrocytic damage.


Asunto(s)
Acetilcolinesterasa/metabolismo , Astrocitos/metabolismo , Lipopolisacáridos/farmacología , Neuroglía/metabolismo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Vaccinium vitis-Idaea/química , Animales , Animales Recién Nacidos , Antioxidantes/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/enzimología , Biomarcadores/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Neuroglía/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Sulfhidrilo/metabolismo
6.
J Trace Elem Med Biol ; 55: 180-189, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31345356

RESUMEN

BACKGROUND: Gliomas are the most aggressive malignant tumors of the central nervous system. The diphenyl diselenide [(PhSe)2] is an organoselenium compound that has multiple pharmacological properties. Previous reports showed that (PhSe)2 nanoencapsulation potentiates its in vitro antitumoral action and reduces its toxicity. OBJECTIVE: In this sense, the current study was designed to further evaluate the (PhSe)2 antitumoral effect by a set of in vitro techniques using a glioma cell line as well as by an animal model of gliobastoma. METHODS: For the in vitro tests, the cell viability, propidium iodide uptake and nitrite levels of rat glioma C6 cells were determined after incubation with free (PhSe)2 or (PhSe)2-loaded nanocapsules (NC). The glioblastoma model was induced by implantation of C6 glioma cells in the right striatum of rats. Following, animals were submitted to a repeated intragastric administration treatment with (PhSe)2 or NC (PhSe)2 (1 mg/kg/day for 15 days) to assess the possible antitumor effect. MAIN FINDINGS: Both compound forms decreased the C6 glioma cells viability without causing any effect in astrocytes cells (healthy control). Importantly, the NC (PhSe)2 had superior cytotoxic effect than its free form and increased the nitrite content. Independent of the (PhSe)2 forms, the intragastric treatment reduced brain tumor size and caused neither alteration in the plasma renal and hepatic markers of function nor in the parameters of oxidative balance in brain, liver and kidneys. PRINCIPAL CONCLUSIONS: The (PhSe)2 nanoencapsulation improved its cytotoxic effect against C6 glioma cells and both compound forms attenuated the tumor development.


Asunto(s)
Antineoplásicos/farmacología , Derivados del Benceno/farmacología , Modelos Animales de Enfermedad , Glioblastoma/tratamiento farmacológico , Nanocápsulas/química , Compuestos de Organoselenio/farmacología , Animales , Antineoplásicos/química , Astrocitos/efectos de los fármacos , Derivados del Benceno/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ensayos de Selección de Medicamentos Antitumorales , Glioblastoma/patología , Masculino , Nitritos/análisis , Compuestos de Organoselenio/química , Ratas , Ratas Wistar
7.
Mater Sci Eng C Mater Biol Appl ; 74: 279-286, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28254296

RESUMEN

This study aimed to develop poly(ε-caprolactone) nanocapsules loaded with indole-3-cabinol (I3C) using rose hip oil (RHO) or medium chain triglycerides (MCT) as oil core. In vitro radical scavenging activity (DPPH method), hemolysis, and antitumor effects on breast (MCF-7) and glioma (C6) cells were conducted. Preformulation evaluations revealed that RHO is suitable to prepare the nanocapsules considering the log P determination and dissolution/swelling experiments of polymer films. The nanocapsules were prepared and presented adequate physicochemical characteristics as mean size around 250nm, polydispersity index values <0.2, zeta potential negative values and I3C encapsulation efficiency around 42%, without any influence of the oil core (RHO or MCT) on these parameters. However, the photodegradation study demonstrated that RHO nanocapsules showed less degree of I3C degradation in comparison to MCT nanocapsules. The in vitro release profile showed that both nanocapsule suspensions demonstrated an initial burst effect followed by a prolonged I3C release. In addition, the formulations were considered hemocompatibles at 10µg/mL and showed an enhanced radical scavenging activity in comparison to free I3C. Moreover, nanocapsules prepared with RHO increased about two times the antitumor effect of I3C on MCF-7 and C6 cells without significant reduction of astrocyte cell viability. In conclusion, nanocapsule formulations developed in this study might be considered promising for cancer treatment.


Asunto(s)
Antineoplásicos/química , Depuradores de Radicales Libres/química , Indoles/química , Nanocápsulas/química , Aceites Volátiles/química , Rosa/química , Antineoplásicos/toxicidad , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Células MCF-7 , Ensayo de Materiales , Nanocápsulas/toxicidad , Fotólisis/efectos de los fármacos , Rosa/metabolismo , Solubilidad , Rayos Ultravioleta
8.
Chem Phys Lipids ; 193: 24-35, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26453973

RESUMEN

In this study, the interaction between soy isoflavone genistein and asolectin liposomes was investigated by monitoring the effects of isoflavone on lipidic hydration, mobility, location and order. These properties were analyzed by the following techniques: horizontal attenuated total reflection Fourier transform infrared spectroscopy (HATR-FTIR), low-field (1)H nuclear magnetic resonance (NMR), high-field (31)P NMR, zeta potential, differential scanning calorimetry (DSC) and UV-vis spectroscopy. The antioxidant and antitumoral activities of the genistein liposomal system were also studied. The genistein saturation concentration in ASO liposomes corresponded to 484 µM. HATR-FTIR results indicated that genistein influences the dynamics of the lipidic phosphate, choline, carbonyl and acyl chain methylenes groups. At the lipid polar head, HATR-FTIR and (31)P NMR results showed that the isoflavone reduces the hydration degree of the phosphate group, as well as its mobility. Genistein ordered the lipid interfacial carbonyl group, as evidenced by the HATR-FTIR bandwidth analysis. This ordering effect was also observed in the lipidic hydrophobic region, by HATR-FTIR, NMR, DSC and turbidity responses. At the saturation concentration, liposome-loaded genistein inhibits the lipid peroxidation induced by hydroxyl radical in 90.9%. ASO liposome-loaded genistein at 100 µM decreased C6 glioma cell viability by 57% after 72 h of treatment. Results showed an increase of the genistein in vitro activities after its incorporation in liposomes. The data described in this work will contribute to a better understanding of the interaction between genistein and a natural-source membrane and of its influence on isoflavone biological activities. Furthermore, the antitumoral results showed that genistein-based liposomes, which contain natural-sourced lipids, may be promising as a drug delivery system to be used in the glioma therapy.


Asunto(s)
Antineoplásicos/farmacología , Antioxidantes/farmacología , Genisteína/farmacología , Liposomas/química , Fosfatidilcolinas/química , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antioxidantes/administración & dosificación , Antioxidantes/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Genisteína/administración & dosificación , Genisteína/química , Glioma/tratamiento farmacológico , Humanos , Peroxidación de Lípido/efectos de los fármacos , Espectroscopía de Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA