Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38805638

RESUMEN

The introduction of all-trans retinoic acid (ATRA) combined with anthracyclines has significantly improved the outcomes for patients with acute promyelocytic leukemia (APL), and this strategy remains the standard of care in countries where arsenic trioxide is not affordable. However, data from national registries and real-world databases indicate that low- and middle-income countries (LMIC) still face disappointing results, mainly due to high induction mortality and suboptimal management of complications. The American Society of Hematology established the International Consortium on Acute Leukemias (ICAL) to address this challenge through international clinical networking. Here, we present the findings from the ICAPL study involving 806 patients with APL recruited in Brazil, Chile, Paraguay, Peru, and Uruguay. The induction mortality rate has decreased to 14.6% compared to the pre-ICAL rate of 32%. Multivariable logistic regression analysis revealed as factors associated with induction death: age ≥ 40 years, ECOG = 3, high-risk status based on the PETHEMA/GIMEMA classification, albumin level ≤ 3.5 g/dL, bcr3 PML/RARA isoform, the interval between presenting symptoms to diagnosis exceeding 48 hours, and the occurrence of central nervous system and pulmonary bleeding. With a median follow-up of 53 months, the estimated 4-year overall survival (OS) rate is 81%, the 4-year disease-free survival (DFS) rate is 80%, and the 4-year cumulative incidence of relapse (CIR) rate is 15%. These results parallel those observed in studies conducted in high-income countries, highlighting the long-term effectiveness of developing clinical networks to improve clinical care and infrastructure in LMIC.

2.
Br J Haematol ; 204(1): 206-220, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37726227

RESUMEN

Progression to aggressive secondary acute myeloid leukaemia (sAML) poses a significant challenge in the management of myeloproliferative neoplasms (MPNs). Since the physiopathology of MPN is closely linked to the activation of interferon (IFN) signalling and that AML initiation and aggressiveness is driven by leukaemia stem cells (LSCs), we investigated these pathways in MPN to sAML progression. We found that high IFN signalling correlated with low LSC signalling in MPN and AML samples, while MPN progression and AML transformation were characterized by decreased IFN signalling and increased LSC signature. A high LSC to IFN expression ratio in MPN patients was associated with adverse clinical prognosis and higher colony forming potential. Moreover, treatment with hypomethylating agents (HMAs) activates the IFN signalling pathway in MPN cells by inducing a viral mimicry response. This response is characterized by double-stranded RNA (dsRNA) formation and MDA5/RIG-I activation. The HMA-induced IFN response leads to a reduction in LSC signature, resulting in decreased stemness. These findings reveal the frequent evasion of viral mimicry during MPN-to-sAML progression, establish the LSC-to-IFN expression ratio as a progression biomarker, and suggests that HMAs treatment can lead to haematological response in murine models by re-activating dsRNA-associated IFN signalling.


Asunto(s)
Leucemia Mieloide Aguda , Trastornos Mieloproliferativos , Humanos , Animales , Ratones , Trastornos Mieloproliferativos/tratamiento farmacológico , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/complicaciones , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Pronóstico , Biomarcadores , Interferones/uso terapéutico
3.
Invest New Drugs ; 40(2): 438-452, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34837603

RESUMEN

Stathmin 1 (STMN1) is a microtubule-destabilizing protein highly expressed in hematological malignancies and involved in proliferation and differentiation. Although a previous study found that the PML-RARα fusion protein, which contributes to the pathophysiology of acute promyelocytic leukemia (APL), positively regulates STMN1 at the transcription and protein activity levels, little is known about the role of STMN1 in APL. In this study, we aimed to investigate the STMN1 expression levels and their associations with laboratory, clinical, and genomic data in APL patients. We also assessed the dynamics of STMN1 expression during myeloid cell differentiation and cell cycle progression, and the cellular effects of STMN1 silencing and pharmacological effects of microtubule-stabilizing drugs on APL cells. We found that STMN1 transcripts were significantly increased in samples from APL patients compared with those of healthy donors (all p < 0.05). However, this had no effect on clinical outcomes. STMN1 expression was associated with proliferation- and metabolism-related gene signatures in APL. Our data confirmed that STMN1 was highly expressed in early hematopoietic progenitors and reduced during cell differentiation, including the ATRA-induced granulocytic differentiation model. STMN1 phosphorylation was predominant in a pool of mitosis-enriched APL cells. In NB4 and NB4-R2 cells, STMN1 knockdown decreased autonomous cell growth (all p < 0.05) but did not impact ATRA-induced apoptosis and differentiation. Finally, treatment with paclitaxel (as a single agent or combined with ATRA) induced microtubule stabilization, resulting in mitotic catastrophe with repercussions for cell viability, even in ATRA-resistant APL cells. This study provides new insights into the STMN1 functions and microtubule dynamics in APL.


Asunto(s)
Leucemia Promielocítica Aguda , Diferenciación Celular , Proliferación Celular , Humanos , Leucemia Promielocítica Aguda/tratamiento farmacológico , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/patología , Mitosis , Proteínas de Fusión Oncogénica/genética , Paclitaxel , Estatmina/genética
4.
Invest New Drugs ; 39(3): 736-746, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33403501

RESUMEN

Chronic myeloid leukemia (CML) is successfully treated with BCR-ABL1 tyrosine kinase inhibitors, but a significant percentage of patients develop resistance. Insulin receptor substrate 1 (IRS1) has been shown to constitutively associate with BCR-ABL1, and IRS1-specific silencing leads to antineoplastic effects in CML cell lines. Here, we characterized the efficacy of NT157, a pharmacological inhibitor of IGF1R-IRS1/2, in CML cells and observed significantly reduced cell viability and proliferation, accompanied by induction of apoptosis. In human K562 cells and in murine Ba/F3 cells, engineered to express either wild-type BCR-ABL1 or the imatinib-resistant BCR-ABL1T315I mutant, NT157 inhibited BCR-ABL1, IGF1R, IRS1/2, PI3K/AKT/mTOR, and STAT3/5 signaling, increased CDKN1A, FOS and JUN tumor suppressor gene expression, and reduced MYC and BCL2 oncogenes. NT157 significantly reduced colony formation of human primary CML cells with minimal effect on normal hematopoietic cells. Exposure of primary CML cells harboring BCR-ABL1T315I to NT157 resulted in increased apoptosis, reduced cell proliferation and decreased phospho-CRKL levels. In conclusion, NT157 has antineoplastic effects on BCR-ABL1 leukemogenesis, independent of T315I mutational status.


Asunto(s)
Antineoplásicos/uso terapéutico , Proteínas Sustrato del Receptor de Insulina/antagonistas & inhibidores , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirogalol/análogos & derivados , Receptor IGF Tipo 1/antagonistas & inhibidores , Sulfonamidas/uso terapéutico , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Regulación Neoplásica de la Expresión Génica , Humanos , Mesilato de Imatinib/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Pirogalol/farmacología , Pirogalol/uso terapéutico , Sulfonamidas/farmacología
5.
Nature ; 503(7476): 371-6, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24107992

RESUMEN

DNA methylation was first described almost a century ago; however, the rules governing its establishment and maintenance remain elusive. Here we present data demonstrating that active transcription regulates levels of genomic methylation. We identify a novel RNA arising from the CEBPA gene locus that is critical in regulating the local DNA methylation profile. This RNA binds to DNMT1 and prevents CEBPA gene locus methylation. Deep sequencing of transcripts associated with DNMT1 combined with genome-scale methylation and expression profiling extend the generality of this finding to numerous gene loci. Collectively, these results delineate the nature of DNMT1-RNA interactions and suggest strategies for gene-selective demethylation of therapeutic targets in human diseases.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/genética , Regulación de la Expresión Génica/genética , ARN no Traducido/metabolismo , Secuencia de Bases , Línea Celular , ADN/genética , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1 , Perfilación de la Expresión Génica , Genoma Humano/genética , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN no Traducido/genética , Proteínas de Unión al ARN/metabolismo , Especificidad por Sustrato , Transcripción Genética/genética
6.
Artículo en Inglés | MEDLINE | ID: mdl-38719723

RESUMEN

BACKGROUND: Acute myeloid leukaemia (AML) is considered a costly disease. Depending on the risk stratification, the patient may receive consolidation with cycles of intermediate doses of cytarabine, auto-HSCT or allo-HSCT according to availability in each service and the availability of a compatible donor. Literature data indicate that safety and effectiveness do not differ between consolidation therapy with intermediate-dose cytarabine or auto-HSCT, and so the cost can help physicians and health managers in their choice. METHOD: The cost of the second consolidation was compared in 18 to 60-year-old patients with de novo AML who were included in the International Consortium of Acute Myeloid Leukaemia (ICAML) protocol. Patients treated with auto-HSCT or intermediate doses of cytarabine (IDAC) were analysed during four years using the microcosting methodology. RESULTS: The mean costs for auto-HSCT and IDAC were BRL$ 34,900.95 (range: 23,611.36-41,229.59) and 15,231.64 (range: 6,546.36-23,253.53), respectively. The mean duration of in-hospital stay was 88.4 (93-133) and 94 (50-153) days, respectively. The mean cost of the four cycles of treatment was BRL$ 114.212,78 for auto-HSCT and BRL$ 121.980,93 for the chemotherapy group. Regardless of the type of treatment, the input that had the greatest economic impact was hospital admission, mainly due to infections. CONCLUSION: Auto-HSCT had a lower average cost per patient and hospitalization rate than chemotherapy.

7.
Front Oncol ; 14: 1393191, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779092

RESUMEN

Tyrosine kinase inhibitors (TKI) have revolutionized the treatment of patients with chronic myeloid leukemia. Patients who achieve sustained deep molecular response are eligible for treatment discontinuation. DES-CML is an ongoing, phase 2 multicentric discontinuation trial. Adult patients with CML in chronic phase with typical BCR::ABL1 transcripts, stable deep molecular response (MR4.5 IS) for two years, and no previous resistance were eligible. Patients underwent a phase of TKI dose de-escalation for six months before discontinuation. TKI was reintroduced at the previous dose if the patient lost major molecular response (MMR) at any time. This study aimed to assess the impact of BCR-ABL transcript kinetics during TKI de-escalation and discontinuation phases on treatment-free survival. So far, the study recruited 41 patients, and 38 patients discontinued therapy (4 were in the second discontinuation attempt). Eleven patients lost MMR, one during the de-escalation phase and ten after discontinuation. 24-month treatment-free survival was 66% (95% CI: 48-84%) in a median follow-up of 7 (1-30) months. No patient lost hematological response or had disease progression. A higher rate of molecular relapses occurred in patients with fluctuating BCR::ABL1 levels after the discontinuation phase (with loss of MR4.5, but no loss of MMR) (P=0.04, HR-4.86 (1.03-22.9) but not confirmed in the multivariate analysis. The longer duration of TKI treatment (P=0.03, HR-1.02, 95%CI - 1.00-1.04) and MMR (P=0.004, HR-0.95, 95%CI - 0.92-098) were independent factors of a lower relapse rate.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38890097

RESUMEN

Improvements in clinical assessment have occurred since the last published recommendations on the diagnosis and treatment of acute promyelocytic leukemia in 2013. Here, a committee of specialists of the Brazilian Association of Hematology, Hemotherapy and Cellular Therapy presents a comprehensive review on the current knowledge, focusing on the advances in diagnosis, risk assessment, and frontline and salvage therapy. The concept of urgent diagnosis is explored as well as the management of critical situations such as coagulopathy and differentiation syndrome. Recent adjustments in risk stratification based on white blood cell counts only are presented together with the incorporation of chemo-free regimens for non-high-risk patients. Special conditions such as acute promyelocytic leukemia in children, the elderly and pregnant women are discussed. Finally, acute promyelocytic leukemia is presented as a highly curable disease because of the real possibility of targeted therapy towards differentiation, and, paradoxically, as a serious and urgent condition that deserves prompt recognition and management to avoid early mortality.

10.
Med Oncol ; 39(5): 97, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35599283

RESUMEN

Myeloproliferative neoplasms (MPN) are hematological disorders characterized by increased proliferation of precursor and mature myeloid cells. MPN patients may present driver mutations in JAK2, MPL, and CALR genes, which are essential to describe the molecular mechanisms of MPN pathogenesis. Despite all the new knowledge on MPN pathogenesis, many questions remain to be answered to develop effective therapies to cure MPN or impair its progression to acute myeloid leukemia. The present study examined the expression levels of the Hippo signaling pathway members in patients with polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), as well as the role that they play in disease pathogenesis. The Hippo pathway is a tumor suppressor pathway that participates in the regulation of cell proliferation, differentiation, and death. Our main finding was that the expression of tumor suppressor genes from Hippo pathway were downregulated and seemed to be associated with cell resistance to apoptosis and increased proliferation rate. Therefore, the decreased expression of Hippo pathway-related genes may contribute to the malignant phenotype, apoptosis resistance, and cell proliferation in MPN pathogenesis.


Asunto(s)
Trastornos Mieloproliferativos , Policitemia Vera , Mielofibrosis Primaria , Calreticulina/genética , Vía de Señalización Hippo , Humanos , Janus Quinasa 2/genética , Mutación , Trastornos Mieloproliferativos/genética , Policitemia Vera/genética , Receptores de Trombopoyetina/genética
11.
Front Immunol ; 13: 840173, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35493444

RESUMEN

Chronic myelogenous leukemia (CML) is a myeloproliferative neoplasm that expresses the Philadelphia chromosome and constitutively activated Bcr-Abl tyrosine kinase in hematopoietic progenitor cells. Bcr-Abl tyrosine-kinase inhibitors (TKI) do not definitively cure all CML patients. The efficacy of TKI is reduced in CML patients in the blastic phase-the most severe phase of the disease-and resistance to this drug has emerged. There is limited knowledge on the underlying mechanisms of disease progression and resistance to TKI beyond BCR-ABL1, as well as on the impact of TKI treatment and disease progression on the metabolome of CML patients. The present study reports the metabolomic profiles of CML patients at different phases of the disease treated with TKI. The plasma metabolites from CML patients were analyzed using liquid chromatography, mass spectrometry, and bioinformatics. Distinct metabolic patterns were identified for CML patients at different phases of the disease and for those who were resistant to TKI. The lipid metabolism in CML patients at advanced phases and TKI-resistant patients is reprogrammed, as detected by analysis of metabolomic data. CML patients who were responsive and resistant to TKI therapy exhibited distinct enriched pathways. In addition, ceramide levels were higher and sphingomyelin levels were lower in resistant patients compared with control and CML groups. Taken together, the results here reported established metabolic profiles of CML patients who progressed to advanced phases of the disease and failed to respond to TKI therapy as well as patients in remission. In the future, an expanded study on CML metabolomics may provide new potential prognostic markers for disease progression and response to therapy.


Asunto(s)
Resistencia a Antineoplásicos , Leucemia Mielógena Crónica BCR-ABL Positiva , Biomarcadores , Progresión de la Enfermedad , Resistencia a Antineoplásicos/genética , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/diagnóstico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Lípidos/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
12.
Med Oncol ; 39(12): 223, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36175590

RESUMEN

Philadelphia-negative myeloproliferative neoplasms (MPN) are clonal hematological diseases associated with driver mutations in JAK2, CALR, and MPL genes. Moreover, several evidence suggests that chronic inflammation and alterations in stromal and immune cells may contribute to MPN's pathophysiology. We evaluated the frequency and the immunophenotype of peripheral blood monocyte subpopulations in patients with polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (MF). Peripheral blood monocytes from PV (n = 16), ET (n = 16), and MF (n = 15) patients and healthy donors (n = 10) were isolated and submitted to immunophenotyping to determine the frequency of monocyte subpopulations and surface markers expression density. Plasma samples were used to measure the levels of soluble CD163, a biomarker of monocyte activity. PV, ET, and MF patients presented increased frequency of intermediate and non-classical monocytes and reduced frequency of classical monocytes compared to controls. Positivity for JAK2 mutation was significantly associated with the percentage of intermediate monocytes. PV, ET, and MF patients presented high-activated monocytes, evidenced by higher HLA-DR expression and increased soluble CD163 levels. The three MPN categories presented increased frequency of CD56+ aberrant monocytes, and PV and ET patients presented reduced frequency of CD80/86+ monocytes. Therefore, alterations in monocyte subpopulations frequency and surface markers expression pattern may contribute to oncoinflammation and may be associated with the pathophysiology of MPN.


Asunto(s)
Trastornos Mieloproliferativos , Neoplasias , Frecuencia de los Genes , Humanos , Inmunofenotipificación , Monocitos , Trastornos Mieloproliferativos/genética
13.
Front Oncol ; 11: 665037, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34084749

RESUMEN

BACKGROUND: Essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF) are clonal hematological diseases classified as Philadelphia chromosome-negative myeloproliferative neoplasms (MPN). MPN pathogenesis is associated with the presence of somatic driver mutations, bone marrow (BM) niche alterations, and tumor inflammatory status. The relevance of soluble mediators in the pathogenesis of MPN led us to analyze the levels of cytokines, chemokines, and growth factors related to inflammation, angiogenesis and hematopoiesis regulation in the BM niche of MPN patients. METHODS: Soluble mediator levels in BM plasma samples from 17 healthy subjects, 28 ET, 19 PV, and 16 PMF patients were determined using a multiplex assay. Soluble mediator signatures were created from categorical analyses of high mediator producers. Soluble mediator connections and the correlation between plasma levels and clinic-laboratory parameters were also analyzed. RESULTS: The soluble mediator signatures of the BM niche of PV patients revealed a highly inflammatory and pro-angiogenic milieu, with increased levels of chemokines (CCL2, CCL5, CXCL8, CXCL12, CXCL10), and growth factors (GM-CSF M-CSF, HGF, IFN-γ, IL-1ß, IL-6Ra, IL-12, IL-17, IL-18, TNF-α, VEGF, and VEGF-R2). ET and PMF patients presented intermediate inflammatory and pro-angiogenic profiles. Deregulation of soluble mediators was associated with some clinic-laboratory parameters of MPN patients, including vascular events, treatment status, risk stratification of disease, hemoglobin concentration, hematocrit, and red blood cell count. CONCLUSIONS: Each MPN subtype exhibits a distinct soluble mediator signature. Deregulated production of BM soluble mediators may contribute to MPN pathogenesis and BM niche modification, provides pro-tumor stimuli, and is a potential target for future therapies.

14.
Cell Death Dis ; 9(3): 311, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29472557

RESUMEN

The recurrent gain-of-function JAK2V617F mutation confers growth factor-independent proliferation for hematopoietic cells and is a major contributor to the pathogenesis of myeloproliferative neoplasms (MPN). The lack of complete response in most patients treated with the JAK1/2 inhibitor ruxolitinib indicates the need for identifying novel therapeutic strategies. Metformin is a biguanide that exerts selective antineoplastic activity in hematological malignancies. In the present study, we investigate and compare effects of metformin and ruxolitinib alone and in combination on cell signaling and cellular functions in JAK2V617F-positive cells. In JAK2V617F-expressing cell lines, metformin treatment significantly reduced cell viability, cell proliferation, clonogenicity, and cellular oxygen consumption and delayed cell cycle progression. Metformin reduced cyclin D1 expression and RB, STAT3, STAT5, ERK1/2 and p70S6K phosphorylation. Metformin plus ruxolitinib demonstrated more intense reduction of cell viability and induction of apoptosis compared to monotherapy. Notably, metformin reduced Ba/F3 JAK2V617F tumor burden and splenomegaly in Jak2V617F knock-in-induced MPN mice and spontaneous erythroid colony formation in primary cells from polycythemia vera patients. In conclusion, metformin exerts multitarget antileukemia activity in MPN: downregulation of JAK2/STAT signaling and mitochondrial activity. Our exploratory study establishes novel molecular mechanisms of metformin and ruxolitinib action and provides insights for development of alternative/complementary therapeutic strategies for MPN.


Asunto(s)
Antineoplásicos/administración & dosificación , Janus Quinasa 2/metabolismo , Metformina/administración & dosificación , Trastornos Mieloproliferativos/tratamiento farmacológico , Animales , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ciclina D1/genética , Ciclina D1/metabolismo , Femenino , Técnicas de Sustitución del Gen , Humanos , Janus Quinasa 2/genética , Ratones , Ratones Endogámicos NOD , Mutación Missense , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/metabolismo , Trastornos Mieloproliferativos/fisiopatología , Fosforilación/efectos de los fármacos , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo
15.
Sci Transl Med ; 8(350): 350ra104, 2016 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-27488898

RESUMEN

Lung cancer is the most common cause of cancer deaths. The expression of the transcription factor C/EBPα (CCAAT/enhancer binding protein α) is frequently lost in non-small cell lung cancer, but the mechanisms by which C/EBPα suppresses tumor formation are not fully understood. In addition, no pharmacological therapy is available to specifically target C/EBPα expression. We discovered a subset of pulmonary adenocarcinoma patients in whom negative/low C/EBPα expression and positive expression of the oncogenic protein BMI1 (B lymphoma Mo-MLV insertion region 1 homolog) have prognostic value. We also generated a lung-specific mouse model of C/EBPα deletion that develops lung adenocarcinomas, which are prevented by Bmi1 haploinsufficiency. BMI1 activity is required for both tumor initiation and maintenance in the C/EBPα-null background, and pharmacological inhibition of BMI1 exhibits antitumor effects in both murine and human adenocarcinoma lines. Overall, we show that C/EBPα is a tumor suppressor in lung cancer and that BMI1 is required for the oncogenic process downstream of C/EBPα loss. Therefore, anti-BMI1 pharmacological inhibition may offer a therapeutic benefit for lung cancer patients with low expression of C/EBPα and high BMI1.


Asunto(s)
Adenocarcinoma/patología , Adenocarcinoma/terapia , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Complejo Represivo Polycomb 1/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma del Pulmón , Animales , Proteína alfa Potenciadora de Unión a CCAAT/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Noqueados , Mutación/genética , Complejo Represivo Polycomb 1/genética , Proteínas Proto-Oncogénicas/genética
16.
J Thorac Oncol ; 9(2): 248-53, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24419423

RESUMEN

INTRODUCTION: Anaplastic lymphoma kinase (ALK) rearrangements are present in an important subset of non-small-cell lung cancer (NSCLC) and predict for response to the tyrosine kinase inhibitor crizotinib. In this study, we evaluated the yet unknown frequency and functional role of ALK splicing isoforms in NSCLC. METHODS: We analyzed 270 cases of NSCLC for ALK kinase domain splicing aberrations and in addition generated constructs with full-length echinoderm microtubule-associated protein-like 4 (EML4)-ALK (E13;A20) and a splicing isoform. RESULTS: Splicing isoforms of the kinase domain of ALK-including complete skipping of exon 23 (ALKdel23, ALK p.I1171fs*42) and exon 27 (ALKdel27, ALK p.T1312fs*0)-were identified in 11.1% (30 of 270 cases) of NSCLC, and these changes coexisted with ALK rearrangements, KRAS mutations, and EGFR mutations. ALK splicing isoforms were observed with full-length EML4-ALK in crizotinib-naive and treated NSCLCs. ALK T1312fs*0 was unable to render cells solely dependent on ALK signaling. Unlike EML4-ALK and EML4-ALK p.L1196M, EML4-ALK T1312fs*0 did not autophosphorylate ALK or other phosphotyrosine sites. Coexpression of equal amounts of EML4-ALK T1312fs*0 and EML4-ALK did not result in resistance to crizotinib, whereas coexpression of EML4-ALK L1196M with EML4-ALK resulted in resistance to inhibition of ALK by crizotinib. CONCLUSIONS: ALK kinase splicing isoforms were present in NSCLC and even if translated seemed to be nonfunctional variants of ALK.


Asunto(s)
Adenocarcinoma/genética , Empalme Alternativo/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Células Escamosas/genética , Neoplasias Pulmonares/genética , Proteínas de Fusión Oncogénica/genética , Proteínas Tirosina Quinasas Receptoras/genética , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Adulto , Anciano , Anciano de 80 o más Años , Quinasa de Linfoma Anaplásico , Western Blotting , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Crizotinib , Exones/genética , Femenino , Estudios de Seguimiento , Humanos , Inmunoprecipitación , Isoenzimas , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirazoles/uso terapéutico , Piridinas/uso terapéutico , Estudios Retrospectivos
17.
Med Oncol ; 29(2): 1227-30, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21528409

RESUMEN

We report a case of a 57-year-old man diagnosed with chronic lymphocytic leukemia (CLL) and presence of a rare t(6;13)(p21;q14.1) in association with an extra copy of chromosome 12. Classical cytogenetic analysis using the immunostimulatory combination of DSP30 and IL-2 showed the karyotype 47,XY,t(6;13)(p21;q14.1), +12 in 75% of the metaphase cells. Spectral karyotype analysis (SKY) confirmed the abnormality previously seen by G-banding. Additionally, interphase fluorescence in situ hybridization using an LSI CEP 12 probe performed on peripheral blood cells without any stimulant agent showed trisomy of chromosome 12 in 67% of analyzed cells (134/200). To the best of our knowledge, the association of t(6;13)(p21;q14.1) and +12 in CLL has never been described. The prognostic significance of these new findings in CLL remains to be elucidated. However, the patient has been followed up since 2009 without any therapeutic intervention and has so far remained stable.


Asunto(s)
Cromosomas Humanos Par 12/genética , Cromosomas Humanos Par 13/genética , Cromosomas Humanos Par 6/genética , Leucemia Linfocítica Crónica de Células B/genética , Translocación Genética/genética , Trisomía/genética , Humanos , Hibridación Fluorescente in Situ , Cariotipificación , Masculino , Persona de Mediana Edad
18.
Med Oncol ; 29(2): 1114-8, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21380778

RESUMEN

Translocation (8;21)(q22;q22)/RUNX1-RUNX1T1 is a molecular marker that is usually associated with a favorable outcome in both pediatric and adult patients with acute myeloid leukemia (AML). The present report describes the results of hematologic, cytogenetic, and fluorescence in situ hybridization analysis of a case of AML with maturation in a 23-year-old woman. Cytogenetic analysis revealed a balanced translocation involving chromosomal band 21q22, which disrupts the RUNX1 gene, and 10q22, with the following karyotype: 45,X,-X,t(10;21)(q24;q22)[cp16]/46,XX [4]. Interphase FISH showed, in 67% of the 300 interphase nuclei analyzed, three signals for RUNX1 and two RUNX1T1, but no signals corresponding to RUNX1-RUNX1T1 fusion gene. These results were corroborated by RT-PCR, which revealed negative results for the amplification of RUNX1-RUNX1T1 fusion gene. The patient was refractory to conventional and salvage chemotherapy regimens and early relapsed after unrelated donor bone marrow transplantation (BMT), dying of pneumonia, acute respiratory failure, and sepsis on day +80 after BMT, 1 year after diagnosis.


Asunto(s)
Cromosomas Humanos Par 10/genética , Cromosomas Humanos Par 21/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Leucemia Mieloide Aguda/genética , Translocación Genética/genética , Adulto , Trasplante de Médula Ósea , Resultado Fatal , Femenino , Humanos , Hibridación Fluorescente in Situ , Cariotipificación , Leucemia Mieloide Aguda/terapia , Donante no Emparentado , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA