Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Phylogenet Evol ; 199: 108161, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39079595

RESUMEN

The Salicaceae includes approximately 54 genera and over 1,400 species with a cosmopolitan distribution. Members of the family are well-known for their diverse secondary plant metabolites, and they play crucial roles in tropical and temperate forest ecosystems. Phylogenetic reconstruction of the Salicaceae has been historically challenging due to the limitations of molecular markers and the extensive history of hybridization and polyploidy within the family. Our study employs whole-genome sequencing of 74 species to generate an extensive phylogeny of the Salicaceae. We generated two RAD-Seq enriched whole-genome sequence datasets and extracted two additional gene sets corresponding to the universal Angiosperms353 and Salicaceae-specific targeted-capture arrays. We reconstructed maximum likelihood-based molecular phylogenies using supermatrix and coalescent-based supertree approaches. Our fossil-calibrated phylogeny estimates that the Salicaceae originated around 128 million years ago and unravels the complex taxonomic relationships within the family. Our findings confirm the non-monophyly of the subgenus Salix s.l. and further support the merging of subgenera Chamaetia and Vetrix, both of which exhibit intricate patterns within and among different sections. Overall, our study not only enhances our understanding of the evolution of the Salicaceae, but also provides valuable insights into the complex relationships within the family.


Asunto(s)
Filogenia , Salicaceae , Salicaceae/genética , Salicaceae/clasificación , Salix/genética , Salix/clasificación , Genoma de Planta , Evolución Molecular , Evolución Biológica , Funciones de Verosimilitud
2.
Oecologia ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829402

RESUMEN

Plants employ diverse anti-herbivore defences that can covary to form syndromes consisting of multiple traits. Such syndromes are hypothesized to impact herbivores more than individual defences. We studied 16 species of lowland willows occurring in central Europe and explored if their chemical and physical traits form detectable syndromes. We tested for phylogenetic trends in the syndromes and explored whether three herbivore guilds (i.e., generalist leaf-chewers, specialist leaf-chewers, and gallers) are affected more by the detected syndromes or individual traits. The recovered syndromes showed low phylogenetic signal and were mainly defined by investment in concentration, richness, or uniqueness of structurally related phenolic metabolites. Resource acquisition traits or inducible volatile organic compounds exhibited a limited correlation with the syndromes. Individual traits composing the syndromes showed various correlations to the assemblages of herbivores from the three studied guilds. In turn, we found some support for the hypothesis that defence syndromes are composed of traits that provide defence against various herbivores. However, individual traits rather than trait syndromes explained more variation for all studied herbivore assemblages. The detected negative correlations between various phenolics suggest that investment trade-offs may occur primarily among plant metabolites with shared metabolic pathways that may compete for their precursors. Moreover, several traits characterizing the recovered syndromes play additional roles in willows other than defence from herbivory. Taken together, our findings suggest that the detected syndromes did not solely evolve as an anti-herbivore defence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA