Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 138(2): 314-27, 2009 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-19632181

RESUMEN

Differences in expression, protein interactions, and DNA binding of paralogous transcription factors ("TF parameters") are thought to be important determinants of regulatory and biological specificity. However, both the extent of TF divergence and the relative contribution of individual TF parameters remain undetermined. We comprehensively identify dimerization partners, spatiotemporal expression patterns, and DNA-binding specificities for the C. elegans bHLH family of TFs, and model these data into an integrated network. This network displays both specificity and promiscuity, as some bHLH proteins, DNA sequences, and tissues are highly connected, whereas others are not. By comparing all bHLH TFs, we find extensive divergence and that all three parameters contribute equally to bHLH divergence. Our approach provides a framework for examining divergence for other protein families in C. elegans and in other complex multicellular organisms, including humans. Cross-species comparisons of integrated networks may provide further insights into molecular features underlying protein family evolution. For a video summary of this article, see the PaperFlick file available with the online Supplemental Data.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Animales , Animales Modificados Genéticamente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , ADN/metabolismo , Redes Reguladoras de Genes , Masculino , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Multimerización de Proteína
3.
Proc Natl Acad Sci U S A ; 115(4): E715-E724, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29311296

RESUMEN

Concern has been raised over increased male reproductive disorders in the Western world, and the disruption of male endocrinology has been suggested to play a central role. Several studies have shown that mild analgesics exposure during fetal life is associated with antiandrogenic effects and congenital malformations, but the effects on the adult man remain largely unknown. Through a clinical trial with young men exposed to ibuprofen, we show that the analgesic resulted in the clinical condition named "compensated hypogonadism," a condition prevalent among elderly men and associated with reproductive and physical disorders. In the men, luteinizing hormone (LH) and ibuprofen plasma levels were positively correlated, and the testosterone/LH ratio decreased. Using adult testis explants exposed or not exposed to ibuprofen, we demonstrate that the endocrine capabilities from testicular Leydig and Sertoli cells, including testosterone production, were suppressed through transcriptional repression. This effect was also observed in a human steroidogenic cell line. Our data demonstrate that ibuprofen alters the endocrine system via selective transcriptional repression in the human testes, thereby inducing compensated hypogonadism.


Asunto(s)
Analgésicos no Narcóticos/efectos adversos , Hipogonadismo/inducido químicamente , Ibuprofeno/efectos adversos , Hormona Luteinizante/sangre , Testosterona/sangre , Adulto , Analgésicos no Narcóticos/sangre , Línea Celular , Expresión Génica/efectos de los fármacos , Humanos , Hipogonadismo/sangre , Ibuprofeno/sangre , Técnicas In Vitro , Células Intersticiales del Testículo/efectos de los fármacos , Células Intersticiales del Testículo/metabolismo , Masculino , Persona de Mediana Edad , Prostaglandinas/biosíntesis , Células de Sertoli/efectos de los fármacos
4.
Diabetologia ; 63(4): 744-756, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32002573

RESUMEN

AIMS/HYPOTHESIS: It is well established that physical activity, abdominal ectopic fat and glycaemic regulation are related but the underlying structure of these relationships is unclear. The previously proposed twin-cycle hypothesis (TC) provides a mechanistic basis for impairment in glycaemic control through the interactions of substrate availability, substrate metabolism and abdominal ectopic fat accumulation. Here, we hypothesise that the effect of physical activity in glucose regulation is mediated by the twin-cycle. We aimed to examine this notion in the Innovative Medicines Initiative Diabetes Research on Patient Stratification (IMI DIRECT) Consortium cohorts comprised of participants with normal or impaired glucose regulation (cohort 1: N ≤ 920) or with recently diagnosed type 2 diabetes (cohort 2: N ≤ 435). METHODS: We defined a structural equation model that describes the TC and fitted this within the IMI DIRECT dataset. A second model, twin-cycle plus physical activity (TC-PA), to assess the extent to which the effects of physical activity in glycaemic regulation are mediated by components in the twin-cycle, was also fitted. Beta cell function, insulin sensitivity and glycaemic control were modelled from frequently sampled 75 g OGTTs (fsOGTTs) and mixed-meal tolerance tests (MMTTs) in participants without and with diabetes, respectively. Abdominal fat distribution was assessed using MRI, and physical activity through wrist-worn triaxial accelerometry. Results are presented as standardised beta coefficients, SE and p values, respectively. RESULTS: The TC and TC-PA models showed better fit than null models (TC: χ2 = 242, p = 0.004 and χ2 = 63, p = 0.001 in cohort 1 and 2, respectively; TC-PA: χ2 = 180, p = 0.041 and χ2 = 60, p = 0.008 in cohort 1 and 2, respectively). The association of physical activity with glycaemic control was primarily mediated by variables in the liver fat cycle. CONCLUSIONS/INTERPRETATION: These analyses partially support the mechanisms proposed in the twin-cycle model and highlight mechanistic pathways through which insulin sensitivity and liver fat mediate the association between physical activity and glycaemic control.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/fisiología , Ejercicio Físico/fisiología , Homeostasis/fisiología , Anciano , Glucemia/metabolismo , Estudios de Cohortes , Estudios Transversales , Dinamarca/epidemiología , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/terapia , Femenino , Finlandia/epidemiología , Prueba de Tolerancia a la Glucosa , Control Glucémico , Humanos , Resistencia a la Insulina , Masculino , Persona de Mediana Edad , Países Bajos/epidemiología , Suecia/epidemiología
5.
Nucleic Acids Res ; 46(D1): D354-D359, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29036351

RESUMEN

miRandola (http://mirandola.iit.cnr.it/) is a database of extracellular non-coding RNAs (ncRNAs) that was initially published in 2012, foreseeing the relevance of ncRNAs as non-invasive biomarkers. An increasing amount of experimental evidence shows that ncRNAs are frequently dysregulated in diseases. Further, ncRNAs have been discovered in different extracellular forms, such as exosomes, which circulate in human body fluids. Thus, miRandola 2017 is an effort to update and collect the accumulating information on extracellular ncRNAs that is spread across scientific publications and different databases. Data are manually curated from 314 articles that describe miRNAs, long non-coding RNAs and circular RNAs. Fourteen organisms are now included in the database, and associations of ncRNAs with 25 drugs, 47 sample types and 197 diseases. miRandola also classifies extracellular RNAs based on their extracellular form: Argonaute2 protein, exosome, microvesicle, microparticle, membrane vesicle, high density lipoprotein and circulating. We also implemented a new web interface to improve the user experience.


Asunto(s)
Bases de Datos Genéticas , Bases del Conocimiento , ARN no Traducido , Biomarcadores , Ácidos Nucleicos Libres de Células , Curaduría de Datos , Humanos , MicroARNs , ARN , ARN Circular , ARN Largo no Codificante , Interfaz Usuario-Computador
6.
Diabetologia ; 62(9): 1601-1615, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31203377

RESUMEN

AIMS/HYPOTHESIS: Here, we describe the characteristics of the Innovative Medicines Initiative (IMI) Diabetes Research on Patient Stratification (DIRECT) epidemiological cohorts at baseline and follow-up examinations (18, 36 and 48 months of follow-up). METHODS: From a sampling frame of 24,682 adults of European ancestry enrolled in population-based cohorts across Europe, participants at varying risk of glycaemic deterioration were identified using a risk prediction algorithm (based on age, BMI, waist circumference, use of antihypertensive medication, smoking status and parental history of type 2 diabetes) and enrolled into a prospective cohort study (n = 2127) (cohort 1, prediabetes risk). We also recruited people from clinical registries with type 2 diabetes diagnosed 6-24 months previously (n = 789) into a second cohort study (cohort 2, diabetes). Follow-up examinations took place at ~18 months (both cohorts) and at ~48 months (cohort 1) or ~36 months (cohort 2) after baseline examinations. The cohorts were studied in parallel using matched protocols across seven clinical centres in northern Europe. RESULTS: Using ADA 2011 glycaemic categories, 33% (n = 693) of cohort 1 (prediabetes risk) had normal glucose regulation and 67% (n = 1419) had impaired glucose regulation. Seventy-six per cent of participants in cohort 1 was male. Cohort 1 participants had the following characteristics (mean ± SD) at baseline: age 62 (6.2) years; BMI 27.9 (4.0) kg/m2; fasting glucose 5.7 (0.6) mmol/l; 2 h glucose 5.9 (1.6) mmol/l. At the final follow-up examination the participants' clinical characteristics were as follows: fasting glucose 6.0 (0.6) mmol/l; 2 h OGTT glucose 6.5 (2.0) mmol/l. In cohort 2 (diabetes), 66% (n = 517) were treated by lifestyle modification and 34% (n = 272) were treated with metformin plus lifestyle modification at enrolment. Fifty-eight per cent of participants in cohort 2 was male. Cohort 2 participants had the following characteristics at baseline: age 62 (8.1) years; BMI 30.5 (5.0) kg/m2; fasting glucose 7.2 (1.4) mmol/l; 2 h glucose 8.6 (2.8) mmol/l. At the final follow-up examination, the participants' clinical characteristics were as follows: fasting glucose 7.9 (2.0) mmol/l; 2 h mixed-meal tolerance test glucose 9.9 (3.4) mmol/l. CONCLUSIONS/INTERPRETATION: The IMI DIRECT cohorts are intensely characterised, with a wide-variety of metabolically relevant measures assessed prospectively. We anticipate that the cohorts, made available through managed access, will provide a powerful resource for biomarker discovery, multivariate aetiological analyses and reclassification of patients for the prevention and treatment of type 2 diabetes.


Asunto(s)
Biomarcadores/sangre , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/sangre , Anciano , Glucemia/efectos de los fármacos , Estudios de Cohortes , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/epidemiología , Femenino , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Humanos , Masculino , Metformina/uso terapéutico , Persona de Mediana Edad , Estado Prediabético/sangre , Estado Prediabético/epidemiología , Estudios Prospectivos
7.
Nucleic Acids Res ; 42(12): 7681-93, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24914054

RESUMEN

Target gene identification for transcription factors is a prerequisite for the systems wide understanding of organismal behaviour. NAM-ATAF1/2-CUC2 (NAC) transcription factors are amongst the largest transcription factor families in plants, yet limited data exist from unbiased approaches to resolve the DNA-binding preferences of individual members. Here, we present a TF-target gene identification workflow based on the integration of novel protein binding microarray data with gene expression and multi-species promoter sequence conservation to identify the DNA-binding specificities and the gene regulatory networks of 12 NAC transcription factors. Our data offer specific single-base resolution fingerprints for most TFs studied and indicate that NAC DNA-binding specificities might be predicted from their DNA-binding domain's sequence. The developed methodology, including the application of complementary functional genomics filters, makes it possible to translate, for each TF, protein binding microarray data into a set of high-quality target genes. With this approach, we confirm NAC target genes reported from independent in vivo analyses. We emphasize that candidate target gene sets together with the workflow associated with functional modules offer a strong resource to unravel the regulatory potential of NAC genes and that this workflow could be used to study other families of transcription factors.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Sitios de Unión , ADN de Plantas/química , ADN de Plantas/metabolismo , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo
8.
J Clin Endocrinol Metab ; 109(9): e1697-e1707, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-38686701

RESUMEN

CONTEXT: The role of glucagon-like peptide-1 (GLP-1) in type 2 diabetes (T2D) and obesity is not fully understood. OBJECTIVE: We investigate the association of cardiometabolic, diet, and lifestyle parameters on fasting and postprandial GLP-1 in people at risk of, or living with, T2D. METHODS: We analyzed cross-sectional data from the two Innovative Medicines Initiative (IMI) Diabetes Research on Patient Stratification (DIRECT) cohorts, cohort 1 (n = 2127) individuals at risk of diabetes; cohort 2 (n = 789) individuals with new-onset T2D. RESULTS: Our multiple regression analysis reveals that fasting total GLP-1 is associated with an insulin-resistant phenotype and observe a strong independent relationship with male sex, increased adiposity, and liver fat, particularly in the prediabetes population. In contrast, we showed that incremental GLP-1 decreases with worsening glycemia, higher adiposity, liver fat, male sex, and reduced insulin sensitivity in the prediabetes cohort. Higher fasting total GLP-1 was associated with a low intake of wholegrain, fruit, and vegetables in people with prediabetes, and with a high intake of red meat and alcohol in people with diabetes. CONCLUSION: These studies provide novel insights into the association between fasting and incremental GLP-1, metabolic traits of diabetes and obesity, and dietary intake, and raise intriguing questions regarding the relevance of fasting GLP-1 in the pathophysiology T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Dieta , Péptido 1 Similar al Glucagón , Estilo de Vida , Estado Prediabético , Humanos , Masculino , Femenino , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/metabolismo , Péptido 1 Similar al Glucagón/sangre , Péptido 1 Similar al Glucagón/metabolismo , Estudios Transversales , Persona de Mediana Edad , Estado Prediabético/sangre , Estado Prediabético/metabolismo , Anciano , Adulto , Resistencia a la Insulina , Ayuno/sangre , Obesidad/sangre , Obesidad/metabolismo , Estudios de Cohortes , Glucemia/metabolismo , Glucemia/análisis , Adiposidad/fisiología
9.
Nucleic Acids Res ; 39(11): 4553-63, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21335608

RESUMEN

Numerous efforts are underway to determine gene regulatory networks that describe physical relationships between transcription factors (TFs) and their target DNA sequences. Members of paralogous TF families typically recognize similar DNA sequences. Knowledge of the molecular determinants of protein-DNA recognition by paralogous TFs is of central importance for understanding how small differences in DNA specificities can dictate target gene selection. Previously, we determined the in vitro DNA binding specificities of 19 Caenorhabditis elegans basic helix-loop-helix (bHLH) dimers using protein binding microarrays. These TFs bind E-box (CANNTG) and E-box-like sequences. Here, we combine these data with logics, bHLH-DNA co-crystal structures and computational modeling to infer which bHLH monomer can interact with which CAN E-box half-site and we identify a critical residue in the protein that dictates this specificity. Validation experiments using mutant bHLH proteins provide support for our inferences. Our study provides insights into the mechanisms of DNA recognition by bHLH dimers as well as a blueprint for system-level studies of the DNA binding determinants of other TF families in different model organisms and humans.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , ADN/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Biología Computacional/métodos , ADN/metabolismo , Dimerización , Modelos Moleculares , Unión Proteica
10.
Nat Biotechnol ; 41(3): 399-408, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36593394

RESUMEN

The application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response to treatment. However, the scale and heterogeneous nature of multi-modal data makes integration and inference a non-trivial task. We developed a deep-learning-based framework, multi-omics variational autoencoders (MOVE), to integrate such data and applied it to a cohort of 789 people with newly diagnosed type 2 diabetes with deep multi-omics phenotyping from the DIRECT consortium. Using in silico perturbations, we identified drug-omics associations across the multi-modal datasets for the 20 most prevalent drugs given to people with type 2 diabetes with substantially higher sensitivity than univariate statistical tests. From these, we among others, identified novel associations between metformin and the gut microbiota as well as opposite molecular responses for the two statins, simvastatin and atorvastatin. We used the associations to quantify drug-drug similarities, assess the degree of polypharmacy and conclude that drug effects are distributed across the multi-omics modalities.


Asunto(s)
Aprendizaje Profundo , Diabetes Mellitus Tipo 2 , Humanos , Algoritmos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética
11.
Nat Commun ; 14(1): 5062, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37604891

RESUMEN

We evaluate the shared genetic regulation of mRNA molecules, proteins and metabolites derived from whole blood from 3029 human donors. We find abundant allelic heterogeneity, where multiple variants regulate a particular molecular phenotype, and pleiotropy, where a single variant associates with multiple molecular phenotypes over multiple genomic regions. The highest proportion of share genetic regulation is detected between gene expression and proteins (66.6%), with a further median shared genetic associations across 49 different tissues of 78.3% and 62.4% between plasma proteins and gene expression. We represent the genetic and molecular associations in networks including 2828 known GWAS variants, showing that GWAS variants are more often connected to gene expression in trans than other molecular phenotypes in the network. Our work provides a roadmap to understanding molecular networks and deriving the underlying mechanism of action of GWAS variants using different molecular phenotypes in an accessible tissue.


Asunto(s)
Genómica , Herencia Multifactorial , Humanos , Fenotipo , ARN Mensajero , Investigadores
12.
Nucleic Acids Res ; 38(21): 7422-31, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20685816

RESUMEN

Quite often a single or a combination of protein mutations is linked to specific diseases. However, distinguishing from sequence information which mutations have real effects in the protein's function is not trivial. Protein design tools are commonly used to explain mutations that affect protein stability, or protein-protein interaction, but not for mutations that could affect protein-DNA binding. Here, we used the protein design algorithm FoldX to model all known missense mutations in the paired box domain of Pax6, a highly conserved transcription factor involved in eye development and in several diseases such as aniridia. The validity of FoldX to deal with protein-DNA interactions was demonstrated by showing that high levels of accuracy can be achieved for mutations affecting these interactions. Also we showed that protein-design algorithms can accurately reproduce experimental DNA-binding logos. We conclude that 88% of the Pax6 mutations can be linked to changes in intrinsic stability (77%) and/or to its capabilities to bind DNA (30%). Our study emphasizes the importance of structure-based analysis to understand the molecular basis of diseases and shows that protein-DNA interactions can be analyzed to the same level of accuracy as protein stability, or protein-protein interactions.


Asunto(s)
Algoritmos , Enfermedad/genética , Proteínas del Ojo/genética , Proteínas de Homeodominio/genética , Mutación Missense , Factores de Transcripción Paired Box/genética , Proteínas Represoras/genética , Secuencia de Aminoácidos , Sitios de Unión , ADN/química , Proteínas del Ojo/química , Proteínas de Homeodominio/química , Humanos , Datos de Secuencia Molecular , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/química , Ingeniería de Proteínas , Estructura Terciaria de Proteína/genética , Proteínas Represoras/química
13.
Cell Rep Med ; 3(1): 100477, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35106505

RESUMEN

The presentation and underlying pathophysiology of type 2 diabetes (T2D) is complex and heterogeneous. Recent studies attempted to stratify T2D into distinct subgroups using data-driven approaches, but their clinical utility may be limited if categorical representations of complex phenotypes are suboptimal. We apply a soft-clustering (archetype) method to characterize newly diagnosed T2D based on 32 clinical variables. We assign quantitative clustering scores for individuals and investigate the associations with glycemic deterioration, genetic risk scores, circulating omics biomarkers, and phenotypic stability over 36 months. Four archetype profiles represent dysfunction patterns across combinations of T2D etiological processes and correlate with multiple circulating biomarkers. One archetype associated with obesity, insulin resistance, dyslipidemia, and impaired ß cell glucose sensitivity corresponds with the fastest disease progression and highest demand for anti-diabetic treatment. We demonstrate that clinical heterogeneity in T2D can be mapped to heterogeneity in individual etiological processes, providing a potential route to personalized treatments.


Asunto(s)
Diabetes Mellitus Tipo 2/diagnóstico , Adulto , Diabetes Mellitus Tipo 2/genética , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Predisposición Genética a la Enfermedad , Genómica , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Factores de Riesgo
14.
J Clin Endocrinol Metab ; 106(1): 80-90, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32944759

RESUMEN

CONTEXT: Pancreatic beta-cell glucose sensitivity is the slope of the plasma glucose-insulin secretion relationship and is a key predictor of deteriorating glucose tolerance and development of type 2 diabetes. However, there are no large-scale studies looking at the genetic determinants of beta-cell glucose sensitivity. OBJECTIVE: To understand the genetic determinants of pancreatic beta-cell glucose sensitivity using genome-wide meta-analysis and candidate gene studies. DESIGN: We performed a genome-wide meta-analysis for beta-cell glucose sensitivity in subjects with type 2 diabetes and nondiabetic subjects from 6 independent cohorts (n = 5706). Beta-cell glucose sensitivity was calculated from mixed meal and oral glucose tolerance tests, and its associations between known glycemia-related single nucleotide polymorphisms (SNPs) and genome-wide association study (GWAS) SNPs were estimated using linear regression models. RESULTS: Beta-cell glucose sensitivity was moderately heritable (h2 ranged from 34% to 55%) using SNP and family-based analyses. GWAS meta-analysis identified multiple correlated SNPs in the CDKAL1 gene and GIPR-QPCTL gene loci that reached genome-wide significance, with SNP rs2238691 in GIPR-QPCTL (P value = 2.64 × 10-9) and rs9368219 in the CDKAL1 (P value = 3.15 × 10-9) showing the strongest association with beta-cell glucose sensitivity. These loci surpassed genome-wide significance when the GWAS meta-analysis was repeated after exclusion of the diabetic subjects. After correction for multiple testing, glycemia-associated SNPs in or near the HHEX and IGF2B2 loci were also associated with beta-cell glucose sensitivity. CONCLUSION: We show that, variation at the GIPR-QPCTL and CDKAL1 loci are key determinants of pancreatic beta-cell glucose sensitivity.


Asunto(s)
Glucosa/farmacología , Secreción de Insulina/genética , Células Secretoras de Insulina/efectos de los fármacos , Adulto , Anciano , Estudios de Casos y Controles , Estudios de Cohortes , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Intolerancia a la Glucosa/epidemiología , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Humanos , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiología , Masculino , Persona de Mediana Edad , Pruebas de Función Pancreática/estadística & datos numéricos , Polimorfismo de Nucleótido Simple , Estado Prediabético/epidemiología , Estado Prediabético/genética , Estado Prediabético/metabolismo
15.
Diabetes ; 70(9): 2092-2106, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34233929

RESUMEN

Differences in glucose metabolism among categories of prediabetes have not been systematically investigated. In this longitudinal study, participants (N = 2,111) underwent a 2-h 75-g oral glucose tolerance test (OGTT) at baseline and 48 months. HbA1c was also measured. We classified participants as having isolated prediabetes defect (impaired fasting glucose [IFG], impaired glucose tolerance [IGT], or HbA1c indicative of prediabetes [IA1c]), two defects (IFG+IGT, IFG+IA1c, or IGT+IA1c), or all defects (IFG+IGT+IA1c). ß-Cell function (BCF) and insulin sensitivity were assessed from OGTT. At baseline, in pooling of participants with isolated defects, they showed impairment in both BCF and insulin sensitivity compared with healthy control subjects. Pooled groups with two or three defects showed progressive further deterioration. Among groups with isolated defect, those with IGT showed lower insulin sensitivity, insulin secretion at reference glucose (ISRr), and insulin secretion potentiation (P < 0.002). Conversely, those with IA1c showed higher insulin sensitivity and ISRr (P < 0.0001). Among groups with two defects, we similarly found differences in both BCF and insulin sensitivity. At 48 months, we found higher type 2 diabetes incidence for progressively increasing number of prediabetes defects (odds ratio >2, P < 0.008). In conclusion, the prediabetes groups showed differences in type/degree of glucometabolic impairment. Compared with the pooled group with isolated defects, those with double or triple defect showed progressive differences in diabetes incidence.


Asunto(s)
Intolerancia a la Glucosa/metabolismo , Glucosa/metabolismo , Hemoglobina Glucada/análisis , Resistencia a la Insulina/fisiología , Estado Prediabético/metabolismo , Adulto , Anciano , Glucemia , Ayuno/sangre , Femenino , Prueba de Tolerancia a la Glucosa , Humanos , Secreción de Insulina , Masculino , Persona de Mediana Edad , Fenotipo
16.
Diabetes Care ; 44(2): 511-518, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33323478

RESUMEN

OBJECTIVE: We investigated the processes underlying glycemic deterioration in type 2 diabetes (T2D). RESEARCH DESIGN AND METHODS: A total of 732 recently diagnosed patients with T2D from the Innovative Medicines Initiative Diabetes Research on Patient Stratification (IMI DIRECT) study were extensively phenotyped over 3 years, including measures of insulin sensitivity (OGIS), ß-cell glucose sensitivity (GS), and insulin clearance (CLIm) from mixed meal tests, liver enzymes, lipid profiles, and baseline regional fat from MRI. The associations between the longitudinal metabolic patterns and HbA1c deterioration, adjusted for changes in BMI and in diabetes medications, were assessed via stepwise multivariable linear and logistic regression. RESULTS: Faster HbA1c progression was independently associated with faster deterioration of OGIS and GS and increasing CLIm; visceral or liver fat, HDL-cholesterol, and triglycerides had further independent, though weaker, roles (R 2 = 0.38). A subgroup of patients with a markedly higher progression rate (fast progressors) was clearly distinguishable considering these variables only (discrimination capacity from area under the receiver operating characteristic = 0.94). The proportion of fast progressors was reduced from 56% to 8-10% in subgroups in which only one trait among OGIS, GS, and CLIm was relatively stable (odds ratios 0.07-0.09). T2D polygenic risk score and baseline pancreatic fat, glucagon-like peptide 1, glucagon, diet, and physical activity did not show an independent role. CONCLUSIONS: Deteriorating insulin sensitivity and ß-cell function, increasing insulin clearance, high visceral or liver fat, and worsening of the lipid profile are the crucial factors mediating glycemic deterioration of patients with T2D in the initial phase of the disease. Stabilization of a single trait among insulin sensitivity, ß-cell function, and insulin clearance may be relevant to prevent progression.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Células Secretoras de Insulina , Glucemia , HDL-Colesterol , Humanos , Insulina
17.
Genome Med ; 12(1): 109, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33261667

RESUMEN

BACKGROUND: The rising prevalence of type 2 diabetes (T2D) poses a major global challenge. It remains unresolved to what extent transcriptomic signatures of metabolic dysregulation and T2D can be observed in easily accessible tissues such as blood. Additionally, large-scale human studies are required to further our understanding of the putative inflammatory component of insulin resistance and T2D. Here we used transcriptomics data from individuals with (n = 789) and without (n = 2127) T2D from the IMI-DIRECT cohorts to describe the co-expression structure of whole blood that mainly reflects processes and cell types of the immune system, and how it relates to metabolically relevant clinical traits and T2D. METHODS: Clusters of co-expressed genes were identified in the non-diabetic IMI-DIRECT cohort and evaluated with regard to stability, as well as preservation and rewiring in the cohort of individuals with T2D. We performed functional and immune cell signature enrichment analyses, and a genome-wide association study to describe the genetic regulation of the modules. Phenotypic and trans-omics associations of the transcriptomic modules were investigated across both IMI-DIRECT cohorts. RESULTS: We identified 55 whole blood co-expression modules, some of which clustered in larger super-modules. We identified a large number of associations between these transcriptomic modules and measures of insulin action and glucose tolerance. Some of the metabolically linked modules reflect neutrophil-lymphocyte ratio in blood while others are independent of white blood cell estimates, including a module of genes encoding neutrophil granule proteins with antibacterial properties for which the strongest associations with clinical traits and T2D status were observed. Through the integration of genetic and multi-omics data, we provide a holistic view of the regulation and molecular context of whole blood transcriptomic modules. We furthermore identified an overlap between genetic signals for T2D and co-expression modules involved in type II interferon signaling. CONCLUSIONS: Our results offer a large-scale map of whole blood transcriptomic modules in the context of metabolic disease and point to novel biological candidates for future studies related to T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Fenotipo , Transcriptoma , Estudios de Cohortes , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Insulina , Resistencia a la Insulina , Leucocitos
18.
Nat Metab ; 2(10): 1135-1148, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33067605

RESUMEN

Circulating proteins are vital in human health and disease and are frequently used as biomarkers for clinical decision-making or as targets for pharmacological intervention. Here, we map and replicate protein quantitative trait loci (pQTL) for 90 cardiovascular proteins in over 30,000 individuals, resulting in 451 pQTLs for 85 proteins. For each protein, we further perform pathway mapping to obtain trans-pQTL gene and regulatory designations. We substantiate these regulatory findings with orthogonal evidence for trans-pQTLs using mouse knockdown experiments (ABCA1 and TRIB1) and clinical trial results (chemokine receptors CCR2 and CCR5), with consistent regulation. Finally, we evaluate known drug targets, and suggest new target candidates or repositioning opportunities using Mendelian randomization. This identifies 11 proteins with causal evidence of involvement in human disease that have not previously been targeted, including EGF, IL-16, PAPPA, SPON1, F3, ADM, CASP-8, CHI3L1, CXCL16, GDF15 and MMP-12. Taken together, these findings demonstrate the utility of large-scale mapping of the genetics of the proteome and provide a resource for future precision studies of circulating proteins in human health.


Asunto(s)
Sistema Cardiovascular/metabolismo , Mapeo Cromosómico , Sistemas de Liberación de Medicamentos , Genómica , Transportador 1 de Casete de Unión a ATP/genética , Asma/genética , Técnicas de Silenciamiento del Gen , Estudio de Asociación del Genoma Completo , Humanos , Enfermedades Inflamatorias del Intestino/genética , Proteína 1 Similar al Receptor de Interleucina-1/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Desequilibrio de Ligamiento , Análisis de la Aleatorización Mendeliana , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteoma , Sitios de Carácter Cuantitativo , Receptores CCR2/genética , Receptores CCR5/genética
19.
PLoS One ; 15(11): e0242360, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33253307

RESUMEN

AIM: Subclasses of different glycaemic disturbances could explain the variation in characteristics of individuals with type 2 diabetes (T2D). We aimed to examine the association between subgroups based on their glucose curves during a five-point mixed-meal tolerance test (MMT) and metabolic traits at baseline and glycaemic deterioration in individuals with T2D. METHODS: The study included 787 individuals with newly diagnosed T2D from the Diabetes Research on Patient Stratification (IMI-DIRECT) Study. Latent class trajectory analysis (LCTA) was used to identify distinct glucose curve subgroups during a five-point MMT. Using general linear models, these subgroups were associated with metabolic traits at baseline and after 18 months of follow up, adjusted for potential confounders. RESULTS: At baseline, we identified three glucose curve subgroups, labelled in order of increasing glucose peak levels as subgroup 1-3. Individuals in subgroup 2 and 3 were more likely to have higher levels of HbA1c, triglycerides and BMI at baseline, compared to those in subgroup 1. At 18 months (n = 651), the beta coefficients (95% CI) for change in HbA1c (mmol/mol) increased across subgroups with 0.37 (-0.18-1.92) for subgroup 2 and 1.88 (-0.08-3.85) for subgroup 3, relative to subgroup 1. The same trend was observed for change in levels of triglycerides and fasting glucose. CONCLUSIONS: Different glycaemic profiles with different metabolic traits and different degrees of subsequent glycaemic deterioration can be identified using data from a frequently sampled mixed-meal tolerance test in individuals with T2D. Subgroups with the highest peaks had greater metabolic risk.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Anciano , Glucemia/análisis , Diabetes Mellitus Tipo 2/sangre , Ayuno/sangre , Ayuno/metabolismo , Femenino , Estudios de Seguimiento , Hemoglobina Glucada/análisis , Hemoglobina Glucada/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Triglicéridos/sangre , Triglicéridos/metabolismo
20.
EBioMedicine ; 58: 102932, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32763829

RESUMEN

BACKGROUND: Dietary advice remains the cornerstone of prevention and management of type 2 diabetes (T2D). However, understanding the efficacy of dietary interventions is confounded by the challenges inherent in assessing free living diet. Here we profiled dietary metabolites to investigate glycaemic deterioration and cardiometabolic risk in people at risk of or living with T2D. METHODS: We analysed data from plasma collected at baseline and 18-month follow-up in individuals from the Innovative Medicines Initiative (IMI) Diabetes Research on Patient Stratification (DIRECT) cohort 1 n = 403 individuals with normal or impaired glucose regulation (prediabetic) and cohort 2 n = 458 individuals with new onset of T2D. A dietary metabolite profile model (Tpred) was constructed using multivariable regression of 113 plasma metabolites obtained from targeted metabolomics assays. The continuous Tpred score was used to explore the relationships between diet, glycaemic deterioration and cardio-metabolic risk via multiple linear regression models. FINDINGS: A higher Tpred score was associated with healthier diets high in wholegrain (ß=3.36 g, 95% CI 0.31, 6.40 and ß=2.82 g, 95% CI 0.06, 5.57) and lower energy intake (ß=-75.53 kcal, 95% CI -144.71, -2.35 and ß=-122.51 kcal, 95% CI -186.56, -38.46), and saturated fat (ß=-0.92 g, 95% CI -1.56, -0.28 and ß=-0.98 g, 95% CI -1.53, -0.42 g), respectively for cohort 1 and 2. In both cohorts a higher Tpred score was also associated with lower total body adiposity and favourable lipid profiles HDL-cholesterol (ß=0.07 mmol/L, 95% CI 0.03, 0.1), (ß=0.08 mmol/L, 95% CI 0.04, 0.1), and triglycerides (ß=-0.1 mmol/L, 95% CI -0.2, -0.03), (ß=-0.2 mmol/L, 95% CI -0.3, -0.09), respectively for cohort 1 and 2. In cohort 2, the Tpred score was negatively associated with liver fat (ß=-0.74%, 95% CI -0.67, -0.81), and lower fasting concentrations of HbA1c (ß=-0.9 mmol/mol, 95% CI -1.5, -0.1), glucose (ß=-0.2 mmol/L, 95% CI -0.4, -0.05) and insulin (ß=-11.0 pmol/mol, 95% CI -19.5, -2.6). Longitudinal analysis showed at 18-month follow up a higher Tpred score was also associated lower total body adiposity in both cohorts and lower fasting glucose (ß=-0.2 mmol/L, 95% CI -0.3, -0.01) and insulin (ß=-9.2 pmol/mol, 95% CI -17.9, -0.4) concentrations in cohort 2. INTERPRETATION: Plasma dietary metabolite profiling provides objective measures of diet intake, showing a relationship to glycaemic deterioration and cardiometabolic health. FUNDING: This work was supported by the Innovative Medicines Initiative Joint Undertaking under grant agreement no. 115,317 (DIRECT), resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies.


Asunto(s)
Diabetes Mellitus Tipo 2/dietoterapia , Metabolómica/métodos , Estado Prediabético/dietoterapia , Anciano , Estudios de Casos y Controles , HDL-Colesterol/sangre , Diabetes Mellitus Tipo 2/sangre , Dieta Saludable , Ingestión de Energía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estado Prediabético/sangre , Triglicéridos/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA