Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Neurochem Res ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888830

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid-ß, leading to N-methyl-D-aspartate (NMDA) receptor-dependent synaptic depression, spine elimination, and memory deficits. Glycine transporter type 1 (GlyT1) modulates glutamatergic neurotransmission via NMDA receptors (NMDAR), presenting a potential alternative therapeutic approach for AD. This study investigates the neuroprotective potential of GlyT1 inhibition in an amyloid-ß-induced AD mouse model. C57BL/6 mice were treated with N-[3-([1,1-Biphenyl]-4-yloxy)-3-(4-fluorophenyl)propyl]-N-methylglycine (NFPS), a GlyT1 inhibitor, 24 h prior to intrahippocampal injection of amyloid-ß. NFPS pretreatment prevented amyloid-ß-induced cognitive deficits in short-term and long-term memory, evidenced by novel object recognition and spatial memory tasks. Moreover, NFPS pretreatment curbed microglial activation, astrocytic reactivity, and subsequent neuronal damage from amyloid-ß injection. An extensive label-free quantitative UPLC-MSE proteomic analysis was performed on the hippocampi of mice treated with NFPS. In proteomics, KEGG enrichment analysis revealed increased in dopaminergic synapse, purine-containing compound biosynthetic process and long-term potentiation, and a reduction in Glucose catabolic process and glycolytic process pathways. The western blot analysis confirmed that NFPS treatment elevated BDNF levels, correlating with enhanced TRKB phosphorylation and mTOR activation. Moreover, NFPS treatment reduced the GluN2B expression after 6 h, which was associated with an increase on CaMKIV and CREB phosphorylation. Collectively, these findings demonstrate that GlyT1 inhibition by NFPS activates diverse neuroprotective pathways, enhancing long-term potentiation signaling and countering amyloid-ß-induced hippocampal damage.

2.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474288

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disease mostly affecting the elderly population. It is characterized by cognitive decline that occurs due to impaired neurotransmission and neuronal death. Even though deposition of amyloid beta (Aß) peptides and aggregation of hyperphosphorylated TAU have been established as major pathological hallmarks of the disease, other factors such as the interaction of genetic and environmental factors are believed to contribute to the development and progression of AD. In general, patients initially present mild forgetfulness and difficulty in forming new memories. As it progresses, there are significant impairments in problem solving, social interaction, speech and overall cognitive function of the affected individual. Osteoarthritis (OA) is the most recurrent form of arthritis and widely acknowledged as a whole-joint disease, distinguished by progressive degeneration and erosion of joint cartilage accompanying synovitis and subchondral bone changes that can prompt peripheral inflammatory responses. Also predominantly affecting the elderly, OA frequently embroils weight-bearing joints such as the knees, spine and hips leading to pains, stiffness and diminished joint mobility, which in turn significantly impacts the patient's standard of life. Both infirmities can co-occur in older adults as a result of independent factors, as multiple health conditions are common in old age. Additionally, risk factors such as genetics, lifestyle changes, age and chronic inflammation may contribute to both conditions in some individuals. Besides localized peripheral low-grade inflammation, it is notable that low-grade systemic inflammation prompted by OA can play a role in AD pathogenesis. Studies have explored relationships between systemic inflammatory-associated diseases like obesity, hypertension, dyslipidemia, diabetes mellitus and AD. Given that AD is the most common form of dementia and shares similar risk factors with OA-both being age-related and low-grade inflammatory-associated diseases, OA may indeed serve as a risk factor for AD. This work aims to review literature on molecular mechanisms linking OA and AD pathologies, and explore potential connections between these conditions alongside future prospects and innovative treatments.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Osteoartritis , Humanos , Anciano , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/genética , Estudios Transversales , Multimorbilidad , Inflamación
3.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38674048

RESUMEN

Inflammation processes of the central nervous system (CNS) play a vital role in the pathogenesis of several neurological and psychiatric disorders like depression. These processes are characterized by the activation of glia cells, such as microglia. Clinical studies showed a decrease in symptoms associated with the mentioned diseases after the treatment with anti-inflammatory drugs. Therefore, the investigation of novel anti-inflammatory drugs could hold substantial potential in the treatment of disorders with a neuroinflammatory background. In this in vitro study, we report the anti-inflammatory effects of a novel hexacyclic peptide-peptoid hybrid in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. The macrocyclic compound X15856 significantly suppressed Interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), c-c motif chemokine ligand 2 (CCL2), CCL3, C-X-C motif chemokine ligand 2 (CXCL2), and CXCL10 expression and release in LPS-treated BV2 microglial cells. The anti-inflammatory effects of the compound are partially explained by the modulation of the phosphorylation of p38 mitogen-activated protein kinases (MAPK), p42/44 MAPK (ERK 1/2), protein kinase C (PKC), and the nuclear factor (NF)-κB, respectively. Due to its remarkable anti-inflammatory properties, this compound emerges as an encouraging option for additional research and potential utilization in disorders influenced by inflammation, such as depression.


Asunto(s)
Antiinflamatorios , Lipopolisacáridos , Microglía , Microglía/efectos de los fármacos , Microglía/metabolismo , Animales , Ratones , Antiinflamatorios/farmacología , Línea Celular , Peptoides/farmacología , Peptoides/química , Interleucina-6/metabolismo , FN-kappa B/metabolismo , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Péptidos/farmacología , Péptidos/química , Factor de Necrosis Tumoral alfa/metabolismo , Quimiocina CXCL2/metabolismo , Citocinas/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Quimiocina CCL3/metabolismo , Quimiocina CCL3/genética , Compuestos Macrocíclicos/farmacología , Compuestos Macrocíclicos/química
4.
Neuroimmunomodulation ; 27(2): 87-96, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33176302

RESUMEN

INTRODUCTION: Major depressive disorder is considered a global public health problem. Inflammatory processes are likely involved in its pathophysiology, but the underlying mechanisms have remained uncertain.Here, we used the model of systemic lipopolysaccharide (LPS) injection to test the hypothesis that depressive-like behaviors occur along with changes in the levels of cytokines and brain-derived neurotrophic factor (BDNF) in the hippocampus (HC), prefrontal cortex (PFC), and hypothalamus (HT), and can be prevented by dexamethasone administration. METHODS: Adult C57Bl/6 male mice were first isolated for 10 days, and thereafter received an injection of dexamethasone (6 mg/kg, intraperitoneal [i.p.]), saline followed by LPS (0.83 mg/kg, i.p.), or saline. After 6 h, animals were subjected to the forced-swim test (FST) and open-field tests. Immediately after the behavioral tests, they were euthanized and their brains were collected for the biochemical analyses. RESULTS: LPS increased the immobility time and reduced the distance travelled in the FST and open-field test, respectively. Dexamethasone increased the immobility time in saline-treated mice but reduced this behavior in the LPS group. LPS increased the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6 and interferon (IFN)-γ in most of the regions evaluated. Dexamethasone prevented LPS-induced IL-6 in the HC, PFC, and HT. Interestingly, dexamethasone increased IL-4 and IL-10 levels in both the LPS- and saline-treated groups. Although dexamethasone reduced BDNF in saline-treated mice, it prevented LPS-induced reduction in this neurotrophic factor. CONCLUSION: In summary, dexamethasone decreased proinflammatory and increased anti-inflammatory levels of cytokines and prevented a reduction in BDNF levels induced by the inflammatory stimulus. Thus, the attenuation of depressive-like behavior induced by dexamethasone may be related to the effects on these parameters.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Trastorno Depresivo Mayor , Animales , Conducta Animal , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Citocinas/metabolismo , Depresión/tratamiento farmacológico , Trastorno Depresivo Mayor/tratamiento farmacológico , Hipocampo/metabolismo , Lipopolisacáridos/toxicidad , Masculino , Ratones
5.
Int J Mol Sci ; 20(9)2019 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-31075861

RESUMEN

A large body of experimental evidence suggests that neuroinflammation is a key pathological event triggering and perpetuating the neurodegenerative process associated with many neurological diseases. Therefore, different stimuli, such as lipopolysaccharide (LPS), are used to model neuroinflammation associated with neurodegeneration. By acting at its receptors, LPS activates various intracellular molecules, which alter the expression of a plethora of inflammatory mediators. These factors, in turn, initiate or contribute to the development of neurodegenerative processes. Therefore, LPS is an important tool for the study of neuroinflammation associated with neurodegenerative diseases. However, the serotype, route of administration, and number of injections of this toxin induce varied pathological responses. Thus, here, we review the use of LPS in various models of neurodegeneration as well as discuss the neuroinflammatory mechanisms induced by this toxin that could underpin the pathological events linked to the neurodegenerative process.


Asunto(s)
Inflamación/patología , Degeneración Nerviosa/patología , Sistema Nervioso/patología , Animales , Modelos Animales de Enfermedad , Humanos , Lipopolisacáridos , Enfermedades Neurodegenerativas/patología
6.
Glia ; 66(4): 708-724, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29226424

RESUMEN

Brain inflammation is a critical factor involved in neurodegeneration. Recently, the prostaglandin E2 (PGE2 ) downstream members were suggested to modulate neuroinflammatory responses accompanying neurodegenerative diseases. In this study, we investigated the protective effects of prostaglandin E2 receptor 2 (EP2 ) during TLR3 and TLR4-driven inflammatory response using in vitro primary microglia and ex vivo organotypic hippocampal slice cultures (OHSCs). Depletion of microglia from OHSCs differentially affected TLR3 and TLR4 receptor expression. Poly(I:C) induced the production of prostaglandin E2 in OHSCs by increasing cyclooxygenase (COX-2) and microsomal prostaglandin E synthase (mPGES)-1. Besides, stimulation of OHSCs and microglia with Poly(I:C) upregulated EP2 receptor expression. Co-stimulation of OHSCs and microglia with the EP2 agonist butaprost reduced inflammatory mediators induced by LPS and Poly(I:C). In Poly(I:C) challenged OHSCs, butaprost almost restored microglia ramified morphology and reduced Iba1 immunoreactivity. Importantly, microglia depletion prevented the induction of inflammatory mediators following Poly(I:C) or LPS challenge in OHSCs. Activation of EP2 receptor reversed the Poly(I:C)/LPS-induced phosphorylation of the mitogen activated protein kinases (MAPKs) ERK, p38 MAPK and c-Jun N-terminal kinase (JNK) in microglia. Collectively, these data identify an anti-inflammatory function for EP2 signaling in diverse innate immune responses, through a mechanism that involves the mitogen-activated protein kinases pathway.


Asunto(s)
Hipocampo/inmunología , Inflamación/metabolismo , Microglía/inmunología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Alprostadil/análogos & derivados , Alprostadil/farmacología , Animales , Proteínas de Unión al Calcio/metabolismo , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/inmunología , Corteza Cerebral/patología , Hipocampo/efectos de los fármacos , Hipocampo/patología , Inmunidad Innata/fisiología , Factores Inmunológicos/farmacología , Inflamación/tratamiento farmacológico , Inflamación/patología , Lipopolisacáridos , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo , Microglía/efectos de los fármacos , Microglía/patología , Poli I-C , Prostaglandina-Endoperóxido Sintasas/metabolismo , Subtipo EP2 de Receptores de Prostaglandina E/agonistas , Técnicas de Cultivo de Tejidos , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 4/metabolismo
7.
J Neuroinflammation ; 15(1): 34, 2018 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-29409515

RESUMEN

After publication of the article [1], it has been brought to our attention that the caption for Figure 2 has been mistakenly replaced with a reproduction of the Figure 4 caption.

8.
J Neuroinflammation ; 14(1): 246, 2017 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-29237478

RESUMEN

BACKGROUND: N-arachidonoylphenolamine (AM404), a paracetamol metabolite, is a potent agonist of the transient receptor potential vanilloid type 1 (TRPV1) and low-affinity ligand of the cannabinoid receptor type 1 (CB1). There is evidence that AM404 exerts its pharmacological effects in immune cells. However, the effect of AM404 on the production of inflammatory mediators of the arachidonic acid pathway in activated microglia is still not fully elucidated. METHOD: In the present study, we investigated the effects of AM404 on the eicosanoid production induced by lipopolysaccharide (LPS) in organotypic hippocampal slices culture (OHSC) and primary microglia cultures using Western blot, immunohistochemistry, and ELISA. RESULTS: Our results show that AM404 inhibited LPS-mediated prostaglandin E2 (PGE2) production in OHSC, and LPS-stimulated PGE2 release was totally abolished in OHSC if microglial cells were removed. In primary microglia cultures, AM404 led to a significant dose-dependent decrease in the release of PGE2, independent of TRPV1 or CB1 receptors. Moreover, AM404 also inhibited the production of PGD2 and the formation of reactive oxygen species (8-iso-PGF2 alpha) with a reversible reduction of COX-1- and COX-2 activity. Also, it slightly decreased the levels of LPS-induced COX-2 protein, although no effect was observed on LPS-induced mPGES-1 protein synthesis. CONCLUSIONS: This study provides new significant insights about the potential anti-inflammatory role of AM404 and new mechanisms of action of paracetamol on the modulation of prostaglandin production by activated microglia.


Asunto(s)
Antiinflamatorios/farmacología , Ácidos Araquidónicos/farmacología , Microglía/efectos de los fármacos , Prostaglandinas/biosíntesis , Acetaminofén , Animales , Células Cultivadas , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa/farmacología , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Ratas , Ratas Sprague-Dawley
9.
J Neuroinflammation ; 14(1): 25, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28143498

RESUMEN

BACKGROUND: The mammalian target of rapamycin (mTOR) is a kinase involved in a variety of physiological and pathological functions. However, the exact role of mTOR in excitotoxicity is poorly understood. Here, we investigated the effects of mTOR inhibition with rapamycin against neurodegeneration, and motor impairment, as well as inflammatory profile caused by an excitotoxic stimulus. METHODS: A single and unilateral striatal injection of quinolinic acid (QA) was used to induce excitotoxicity in mice. Rapamycin (250 nL of 0.2, 2, or 20 µM; intrastriatal route) was administered 15 min before QA injection. Forty-eight hours after QA administration, rotarod test was performed to evaluate motor coordination and balance. Fluoro-Jade C, Iba-1, and GFAP staining were used to evaluate neuronal cell death, microglia morphology, and astrocytes density, respectively, at this time point. Levels of cytokines and neurotrophic factors were measured by ELISA and Cytometric Bead Array 8 h after QA injection. Striatal synaptosomes were used to evaluate the release of glutamate. RESULTS: We first demonstrated that rapamycin prevented the motor impairment induced by QA. Moreover, mTOR inhibition also reduced the neurodegeneration and the production of interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α induced by excitotoxic stimulus. The lowest dose of rapamycin also increased the production of IL-10 and prevented the reduction of astrocyte density induced by QA. By using an in vitro approach, we demonstrated that rapamycin differently alters the release of glutamate from striatal synaptosomes induced by QA, reducing or enhancing the release of this neurotransmitter at low or high concentrations, respectively. CONCLUSION: Taken together, these data demonstrated a protective effect of rapamycin against an excitotoxic stimulus. Therefore, this study provides new evidence of the detrimental role of mTOR in neurodegeneration, which might represent an important target for the treatment of neurodegenerative diseases.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/etiología , Ácido Quinolínico/toxicidad , Sirolimus/farmacología , Sirolimus/uso terapéutico , Animales , Peso Corporal/efectos de los fármacos , Cuerpo Estriado/fisiología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Ácido Glutámico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Trastornos del Movimiento/tratamiento farmacológico , Trastornos del Movimiento/etiología , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/etiología , Neuroglía/efectos de los fármacos , Neuroglía/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Síndromes de Neurotoxicidad/complicaciones , Equilibrio Postural/efectos de los fármacos , Cloruro de Potasio/farmacología , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo , Sinaptosomas/ultraestructura
10.
Epilepsia ; 58(12): e162-e166, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29105060

RESUMEN

The endocannabinoid system has gained attention as an important modulator of activity in the central nervous system. Initial studies focused on cannabinoid receptor 1 (CB1), which is widely expressed in the brain, but recent work also implicates cannabinoid receptor 2 (CB2) in modulating neuronal activity. Both receptors are capable of reducing neuronal activity, generating interest in cannabinoid receptor agonists as potential anticonvulsants. CB1 (Cnr1) and CB2 (Cnr2) single-knockout mice have been generated, with the former showing heightened seizure sensitivity, but not overt seizures. Given overlapping and complementary functions of CB1 and CB2 receptors, we queried whether double-knockout mice would show an exacerbated neurological phenotype. Strikingly, 30% of double-knockout mice exhibited provoked behavioral seizures, and 80% were found to be epileptic following 24/7 video-electroencephalographic monitoring. Single-knockout animals did not exhibit seizures. These findings highlight the importance of the endocannabinoid system for maintaining network stability.


Asunto(s)
Epilepsia/genética , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB2/genética , Animales , Conducta Animal , Electroencefalografía , Epilepsia/etiología , Manejo Psicológico , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Red Nerviosa/fisiopatología , Fenotipo , Convulsiones/etiología , Convulsiones/genética , Convulsiones/psicología
11.
J Neuroinflammation ; 13: 11, 2016 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-26780827

RESUMEN

BACKGROUND: Microglia recognize pathogen-associated molecular patterns such as double-stranded RNA (dsRNA) present in some viruses. Polyinosinic-polycytidylic acid [poly(I:C)] is a synthetic analog of dsRNA that activates different molecules, such as retinoic acid-inducible gene I, melanoma differentiation-associated gene 5, and toll-like receptor-3 (TLR3). Poly(I:C) increases the expression of different cytokines in various cell types. However, its role in the regulation of the production of inflammatory mediators of the arachidonic acid pathway by microglia is poorly understood. METHODS: In the present study, we evaluated the effect of poly(I:C) on the production of prostaglandin E2 (PGE2) and the inducible enzymes cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1) in primary rat microglia. Microglia were stimulated with different concentrations of poly(I:C) (0.1-10 µg/ml), and the protein levels of COX-2 and mPGES-1, as well as the release of PGE2, were determined by western blot and enzyme immunoassay (EIA), respectively. Values were compared using one-way ANOVA with post hoc Student-Newman-Keuls test. RESULTS: Poly(I:C) increased the production of PGE2, as well as mPGES-1 and COX-2 synthesis. To investigate the mechanisms involved in poly(I:C)-induced COX-2 and mPGES-1, we studied the effects of various signal transduction pathway inhibitors. Protein levels of COX-2 and mPGES-1 were reduced by SB203580, SP600125, and SC514 (p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), and IκB kinase (IKK) inhibitors, respectively), as well as by PD98059 and PD0325901 (mitogen-activated protein kinase kinase (MEK) inhibitors). Rapamycin, a mammalian target of rapamycin (mTOR) inhibitor, enhanced the synthesis of COX-2. Inhibition of phosphatidylinositol 3-kinase (PI3K) by LY294002 or dual inhibition of PI3K/mTOR (with NVP-BEZ235) enhanced COX-2 and reduced mPGES-1 immunoreactivity. To confirm the data obtained with the inhibitors, we studied the phosphorylation of the blocked kinases by western blot. Poly(I:C) increased the phosphorylation of p38 MAPK, extracellular signal-regulated kinase (ERK), JNK, protein kinase B (Akt), and IκB. CONCLUSIONS: Taken together, our data demonstrate that poly(I:C) increases the synthesis of enzymes involved in PGE2 synthesis via activation of different signaling pathways in microglia. Importantly, poly(I:C) activates similar pathways also involved in TLR4 signaling that are important for COX-2 and mPGES-1 synthesis. Thus, these two enzymes and their products might contribute to the neuropathological effects induced in response to dsRNA, whereby the engagement of TLR3 might be involved.


Asunto(s)
Ciclooxigenasa 2/metabolismo , Inductores de Interferón/farmacología , Oxidorreductasas Intramoleculares/metabolismo , Microglía/efectos de los fármacos , Poli I-C/farmacología , Animales , Animales Recién Nacidos , Células Cultivadas , Corteza Cerebral/citología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Fosforilación/efectos de los fármacos , Prostaglandina-E Sintasas , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
12.
Epilepsy Behav ; 64(Pt A): 83-89, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27736661

RESUMEN

Temporal lobe epilepsy (TLE) is the most common form of epilepsy in adults. The pilocarpine (PILO) experimental model of TLE portrays behavioral and pathophysiological changes in rodents that are very similar to those found in humans with TLE. However, this model is associated with an unfortunate high mortality rate. Studies have shown that intrahippocampal injection of PILO, while having a much smaller mortality rate, induces status epilepticus (SE) that secondarily leads to TLE. To the best of our knowledge, the present study was the first to evaluate the cognitive and histological alterations 72h after intrahippocampal microinjection of PILO in C57BL/6 mice. Seventy percent of mice developed status epilepticus (SE) after PILO administration, and all animals survived after SE. Seventy-two hours after SE, mice presented memory impairment in both Novel Object Recognition (recognition index - vehicle: 67.57±4.46% vs PILO: 52.33±3.29%) and Contextual Fear Conditioning (freezing time - vehicle: 203±20.43 vs PILO: 107.80±25.17s) tasks. Moreover, using Nissl and NeuN staining, we observed in PILO-treated mice a significant decrease in cell viability and an increase in neuronal loss in all three hippocampal regions analyzed, cornus ammonis (CA) 1, CA3, and dentate gyrus (DG), in comparison with the control group. Additionally, using Iba-1 staining, we observed in PILO-treated mice a significant increase in microglial proliferation in CA1, CA3, and DG of the hippocampus. Therefore, intrahippocampal PILO microinjection is an efficient route to induce SE and acute postictal epileptogenic-like alterations in C57BL/6 mice.


Asunto(s)
Muerte Celular/efectos de los fármacos , Epilepsia del Lóbulo Temporal/inducido químicamente , Gliosis/inducido químicamente , Hipocampo/efectos de los fármacos , Trastornos de la Memoria/inducido químicamente , Agonistas Muscarínicos/farmacología , Neuronas/efectos de los fármacos , Pilocarpina/farmacología , Estado Epiléptico/inducido químicamente , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Agonistas Muscarínicos/administración & dosificación , Pilocarpina/administración & dosificación
13.
J Neurochem ; 135(6): 1189-202, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26376347

RESUMEN

MiRNAs, a family of small non-coding RNAs, have emerged as novel post-transcriptional regulators of numerous cellular responses. Although the involvement of miRNAs in the regulation of neuroinflammation in various neurological diseases has been previously studied, their role in the production of inflammatory mediators during microglia activation is poorly understood. In this study, the role of miR-26a has been investigated in the modulation of inflammatory response in cultured microglia. Using real-time PCR, the expression of miR-26a was studied in toll-like receptors 4 stimulated primary mouse microglia. miR-26a expression was found to be rapidly reduced after the stimulation of toll-like receptors 4 in microglia. Over-expression of miR-26a significantly decreased the production of inflammatory cytokines such as tumor necrosis factor α and IL-6, whereas knockdown of miR-26a increased the expression of these mediators. Furthermore, using in silico analysis, we identified that the activating transcription factor (ATF) 2 is directly targeted by miR-26a. This finding was confirmed by loss and gain of function studies. Similar to the effect of miR-26a over-expression, knockdown of activating transcription factor 2 inhibited the production of proinflammatory cytokines, particularly IL-6. Taken together, our results suggest the involvement of miR-26a in the regulation of the production of proinflammatory cytokines in microglia. We proposed that in microglia, activation of toll-like receptor 4 (TLR4) by lipopolysaccharide (LPS) down-regulates miR-26a. The down-regulation of this miR increases expression of activating transcription factor 2 (ATF2). This event, in addition to the activation of ATF2 by c-Jun N-terminal kinase (JNK), increases interleukin-6 (IL-6) production. On the other hand, miR-26a also increases the production of tumor necrosis factor α (TNFα) by a mechanism independent of ATF2.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/metabolismo , MicroARNs/genética , Microglía/efectos de los fármacos , Microglía/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Citocinas/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Inflamación/genética , Proteínas Quinasas JNK Activadas por Mitógenos/efectos de los fármacos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL , Receptor Toll-Like 4/genética
14.
Exp Neurol ; 377: 114812, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38729551

RESUMEN

Ischemic stroke induces a debilitating neurological insult, where inflammatory processes contribute greatly to the expansion and growth of the injury. Receptor-interacting protein kinase 2 (RIPK2) is most well-known for its role as the obligate kinase for NOD1/2 pattern recognition receptor signaling and is implicated in the pathology of various inflammatory conditions. Compared to a sham-operated control, ischemic stroke resulted in a dramatic increase in the active, phosphorylated form of RIPK2, indicating that RIPK2 may be implicated in the response to stroke injury. Here, we assessed the effects of pharmacological inhibition of RIPK2 to improve post-stroke outcomes in mice subjected to experimental ischemic stroke. We found that treatment at the onset of reperfusion with a RIPK2 inhibitor, which inhibits the phosphorylation and activation of RIPK2, resulted in marked improvements in post-stroke behavioral outcomes compared to the vehicle-administered group assessed 24 h after stroke. RIPK2 inhibitor-treated mice exhibited dramatic reductions in infarct volume, concurrent with reduced damage to the blood-brain barrier, as evidenced by reduced levels of active matrix metalloproteinase-9 (MMP-9) and leakage of blood-borne albumin in the ipsilateral cortex. To explore the protective mechanism of RIPK2 inhibition, we next pretreated mice with RIPK2 inhibitor or vehicle and examined transcriptomic alterations occurring in the ischemic brain 6 h after stroke. We observed a dramatic reduction in neuroinflammatory markers in the ipsilateral cortex of the inhibitor-treated group while also attaining a comprehensive view of the vast transcriptomic alterations occurring in the brain with inhibitor treatment through bulk RNA-sequencing of the injured cortex. Overall, we provide significant novel evidence that RIPK2 may represent a viable target for post-stroke pharmacotherapy and potentially other neuroinflammatory conditions.


Asunto(s)
Accidente Cerebrovascular Isquémico , Ratones Endogámicos C57BL , Fármacos Neuroprotectores , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor , Animales , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/antagonistas & inhibidores , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Ratones , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Masculino
15.
Artículo en Inglés | MEDLINE | ID: mdl-38048936

RESUMEN

The factor RasGEF1b is a Ras guanine exchange factor involved in immune responses. Studies have also implicated RasGEF1b in the CNS development. It is still limited the understanding of the role of RasGEF1b in CNS functioning. Using RasGEF1b deficient mice (RasGEF1b-cKO), we investigated the impact of this gene deletion in behavior, cognition, brain neurochemistry and microglia morphology. We showed that RasGEF1b-cKO mice display spontaneous hyperlocomotion and anhedonia. RasGEF1b-cKO mice also exhibited compulsive-like behavior that was restored after acute treatment with the selective serotonin reuptake inhibitor (SSRI) fluoxetine (5 mg/kg). A down-regulation of mRNA of dopamine receptor (Drd1, Drd2, Drd4 and Drd5) and serotonin receptor genes (5Htr1a, 5Htr1b and 5Htr1d) was observed in hippocampus of RasGEF1b-cKO mice. These mice also had reduction of Drd1 and Drd2 in prefrontal cortex and 5Htr1d in striatum. In addition, morphological alterations were observed in RasGEF1b deficient microglia along with decreased levels of hippocampal BDNF. We provided original evidence that the deletion of RasGEF1b leads to unique behavioral features, implicating this factor in CNS functioning.


Asunto(s)
Encéfalo , Inhibidores Selectivos de la Recaptación de Serotonina , Animales , Ratones , Cognición , Fluoxetina/farmacología , Corteza Prefrontal , Receptores de Dopamina D5
16.
Neuroscience ; 549: 65-75, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38750924

RESUMEN

Recent evidence has supported a pathogenic role for neuroinflammation in Parkinson's disease (PD). Inflammatory response has been associated with symptoms and subtypes of PD. However, it is unclear whether immune changes are involved in the initial pathogenesis of PD, leading to the non-motor symptoms (NMS) observed in its prodromal stage. The current study aimed to characterize the behavioral and cognitive changes in a toxin-induced model of prodromal PD-like syndrome. We also sought to investigate the role of neuroinflammation in prodromal PD-related NMS. Male mice were subjected to bilateral intranasal infusion with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or saline (control group), followed by comprehensive behavioral, pathological and neurochemical analysis. Intranasal MPTP infusion was able to cause the loss of dopaminergic neurons in the substantia nigra (SN). In parallel, it induced impairment in olfactory discrimination and social memory consolidation, compulsive and anxiety-like behaviors, but did not influence motor performance. Iba-1 and GFAP expressions were increased in the SN, suggesting an activated state of microglia and astrocytes. Consistent with this, MPTP mice had increased levels of IL-10 and IL-17A, and decreased levels of BDNF and TrkA mRNA in the SN. The striatum showed increased IL-17A, BDNF, and NFG levels compared to control mice. In conclusion, neuroinflammation may play an important role in the early stage of experimental PD-like syndrome, leading to cognitive and behavioral changes. Our results also indicate that intranasal administration of MPTP may represent a valuable mouse model for prodromal PD.


Asunto(s)
Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Síntomas Prodrómicos , Sustancia Negra , Animales , Masculino , Sustancia Negra/metabolismo , Sustancia Negra/patología , Sustancia Negra/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Enfermedades Neuroinflamatorias/patología , Cuerpo Estriado/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/patología , Ratones , Microglía/metabolismo , Microglía/patología , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ansiedad/etiología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología
17.
Curr Neuropharmacol ; 21(2): 235-259, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36503452

RESUMEN

The use of psychostimulant drugs can modify brain function by inducing changes in the reward system, mainly due to alterations in dopaminergic and glutamatergic transmissions in the mesocorticolimbic pathway. However, the etiopathogenesis of addiction is a much more complex process. Previous data have suggested that microglia and other immune cells are involved in events associated with neuroplasticity and memory, which are phenomena that also occur in addiction. Nevertheless, how dependent is the development of addiction on the activity of these cells? Although the mechanisms are not known, some pathways may be involved. Recent data have shown psychoactive substances may act directly on immune cells, alter their functions and induce various inflammatory mediators that modulate synaptic activity. These could, in turn, be involved in the pathological alterations that occur in substance use disorder. Here, we extensively review the studies demonstrating how cocaine and amphetamines modulate microglial number, morphology, and function. We also describe the effect of these substances in the production of inflammatory mediators and a possible involvement of some molecular signaling pathways, such as the toll-like receptor 4. Although the literature in this field is scarce, this review compiles the knowledge on the neuroimmune axis that is involved in the pathogenesis of addiction, and suggests some pharmacological targets for the development of pharmacotherapy.


Asunto(s)
Estimulantes del Sistema Nervioso Central , Cocaína , Trastornos Relacionados con Sustancias , Humanos , Microglía , Cocaína/farmacología , Anfetaminas/farmacología
18.
Curr Neuropharmacol ; 21(2): 219-234, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36154605

RESUMEN

Advanced glycation end products (AGEs) are compounds formed after the non-enzymatic addition of reducing sugars to lipids, proteins, and nucleic acids. They are associated with the development of various clinical complications observed in diabetes and cardiovascular diseases, such as retinopathy, nephropathy, diabetic neuropathy, and others. In addition, compelling evidence indicates that these molecules participate in the progression of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Multiple cellular and molecular alterations triggered by AGEs that could alter homeostasis have been identified. One of the main targets for AGE signaling is the receptor for advanced glycation end-products (RAGE). Importantly, this receptor is the target of not only AGEs, but also amyloid ß peptides, HMGB1 (high-mobility group box-1), members of the S100 protein family, and glycosaminoglycans. The activation of this receptor induces intracellular signaling cascades that are involved in pathological processes and cell death. Therefore, RAGE represents a key target for pharmacological interventions in neurodegenerative diseases. This review will discuss the various effects of AGEs and RAGE activation in the pathophysiology of neurodegenerative diseases, as well as the currently available pharmacological tools and promising drug candidates.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Péptidos beta-Amiloides , Productos Finales de Glicación Avanzada/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo
19.
Neurochem Int ; 165: 105508, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36863495

RESUMEN

Synthetic cannabidiol (CBD) derivative VCE-004.8 is a peroxisome proliferator-activated receptor gamma (PPARγ) and cannabinoid receptor type 2 (CB2) dual agonist with hypoxia mimetic activity. The oral formulation of VCE-004.8, termed EHP-101, possesses anti-inflammatory properties and is currently in phase 2 clinical trials for relapsing forms of multiple sclerosis. The activation of PPARγ or CB2 receptors exerts neuroprotective effects by dampening neuroinflammation in ischemic stroke models. However, the effect of a dual PPARγ/CB2 agonist in ischemic stroke models is not known. Here, we demonstrate that treatment with VCE-004.8 confers neuroprotection in young mice subjected to cerebral ischemia. Male C57BL/6J mice, aged 3-4 months, were subjected to 30-min transient middle cerebral artery occlusion (MCAO). We evaluated the effect of intraperitoneal VCE-004.8 treatment (10 or 20 mg/kg) either at the onset of reperfusion or 4h or 6h after the reperfusion. Seventy-two hours after ischemia, animals were subjected to behavioral tests. Immediately after the tests, animals were perfused, and brains were collected for histology and PCR analysis. Treatment with VCE-004.8 either at the onset or 4h after reperfusion significantly reduced infarct volume and improved behavioral outcomes. A trend toward reduction in stroke injury was observed in animals receiving the drug starting 6h after recirculation. VCE-004.8 significantly reduced the expression of pro-inflammatory cytokines and chemokines involved in BBB breakdown. Mice receiving VCE-004.8 had significantly lower levels of extravasated IgG in the brain parenchyma, indicating protection against stroke-induced BBB disruption. Lower levels of active matrix metalloproteinase-9 were found in the brain of drug-treated animals. Our data show that VCE-004.8 is a promising drug candidate for treating ischemic brain injury. Since VCE-004.8 has been shown to be safe in the clinical setting, the possibility of repurposing its use as a delayed treatment option for ischemic stroke adds substantial translational value to our findings.


Asunto(s)
Isquemia Encefálica , Cannabidiol , Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Accidente Cerebrovascular , Ratones , Animales , Masculino , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Neuroprotección , PPAR gamma/metabolismo , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Ratones Endogámicos C57BL , Isquemia Encefálica/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Modelos Animales de Enfermedad
20.
Brain Behav Immun Health ; 30: 100652, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37396335

RESUMEN

Toxoplasma gondii chronic infection is characterized by the establishment of tissue cysts in the brain and increased levels of IFN-γ, which can lead to brain circuitry interference and consequently abnormal behaviour in mice. In this sense, the study presented here sought to investigate the impact of chronic infection by two T. gondii strains in the brain of infection-resistant mice, as a model for studying the involvement of chronic neuroinflammation with the development of behavioural alterations. For that, male BALB/c mice were divided into three groups: non-infected (Ni), infected with T. gondii ME49 clonal strain (ME49), and infected with TgCkBrRN2 atypical strain (CK2). Mice were monitored for 60 days to establish the chronic infection and then submitted to behavioural assessment. The enzyme-linked immunosorbent assay was used for measurement of specific IgG in the blood and levels of inflammatory cytokines and neurotrophic factors in the brain, and the cell's immunophenotype was determined by multiparametric flow cytometry. Mice infected with ME49 clonal strain displayed hyperlocomotor activity and memory deficit, although no signs of depressive- and/or anxiety-like behaviour were detected; on the other hand, chronic infection with CK2 atypical strain induced anxiety- and depressive-like behaviour. During chronic infection by CK2 atypical strain, mice displayed a higher number of T. gondii brain tissue cysts and inflammatory infiltrate, composed mainly of CD3+ T lymphocytes and Ly6Chi inflammatory monocytes, compared to mice infected with the ME49 clonal strain. Infected mice presented a marked decrease of microglia population compared to non-infected group. Chronic infection with CK2 strain produced elevated levels of IFN-γ and TNF-ɑ in the brain, decreased NGF levels in the prefrontal cortex and striatum, and altered levels of fractalkine (CX3CL1) in the prefrontal cortex and hippocampus. The persistent inflammation and the disturbance in the cerebral homeostasis may contribute to altered behaviour in mice, as the levels of IFN-γ were shown to be correlated with the behavioural parameters assessed here. Considering the high incidence and life-long persistence of T. gondii infection, this approach can be considered a suitable model for studying the impact of chronic infections in the brain and how it impacts in behavioural responses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA