Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Metab Brain Dis ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120852

RESUMEN

Obesity is a significant health concern that is correlated with various adverse health outcomes. Diet-induced obesity (DIO) is associated with impaired cognitive function. Pharmacological treatments for obesity are limited and may have serious adverse effects. Zingiber officinale (ZO) has anti-inflammatory and antioxidant effects, in addition to metabolic effects. This study aimed to assess the effects of Zingiber officinale supplementation on cognitive function, anxiety levels, neurotrophin levels, and the inflammatory and oxidative status in the cortex following DIO in mice. Two-month-old male Swiss mice were fed DIO or standard chow for 4 months and subsequently subdivided into the following groups (n = 10 mice/group): (i) control - vehicle (CNT + vehicle); (ii) CNT supplemented with ZO (CNT + ZO); (iii) obese mice (DIO + vehicle); and (iv) obese mice supplemented with ZO (DIO + ZO) (n = 10). Zingiber officinale extract (400 mg/kg/day) was administered for 35 days via oral gavage. The DIO + vehicle group exhibited impaired recognition memory. The CNT + ZO group presented a greater number of crossings in the open field. No difference between the groups was observed in the plus maze test. DIO + vehicle increased the DCFH and carbonylation levels in the cortex. The DIO + vehicle group presented a reduction in catalase activity. The expression of inflammatory or neurotrophin markers in the cerebral cortex was not different. In conclusion, our findings indicate that supplementation with ZO reverses the cognitive impairment in DIO mice and enhances the antioxidant status of the cerebral cortex.

2.
J Neurochem ; 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37694813

RESUMEN

Familial hypercholesterolemia (FH) is caused by mutations in the gene that encodes the low-density lipoprotein (LDL) receptor, which leads to an excessive increase in plasma LDL cholesterol levels. Previous studies have shown that FH is associated with gliosis, blood-brain barrier dysfunction, and memory impairment, but the mechanisms associated with these events are still not fully understood. Therefore, we aimed to investigate the role of microgliosis in the neurochemical and behavioral changes associated with FH using LDL receptor knockout (LDLr-/- ) mice. We noticed that microgliosis was more severe in the hippocampus of middle-aged LDLr-/- mice, which was accompanied by microglial morphological changes and alterations in the immunocontent of synaptic protein markers. At three months of age, the LDLr-/- mice already showed increased microgliosis and decreased immunocontent of claudin-5 in the prefrontal cortex (PFC). Subsequently, 6-month-old male C57BL/6 wild-type and LDLr-/- mice were treated once daily for 30 days with minocycline (a pharmacological inhibitor of microglial cell reactivity) or vehicle (saline). Adult LDLr-/- mice displayed significant hippocampal memory impairment, which was ameliorated by minocycline treatment. Non-treated LDLr-/- mice showed increased microglial density in all hippocampal regions analyzed, a process that was not altered by minocycline treatment. Region-specific microglial morphological analysis revealed different effects of genotype or minocycline treatment on microglial morphology, depending on the hippocampal subregion analyzed. Moreover, 6-month-old LDLr-/- mice exhibited a slight but not significant increase in IBA-1 immunoreactivity in the PFC, which was reduced by minocycline treatment without altering microglial morphology. Minocycline treatment also reduced the presence of microglia within the perivascular area in both the PFC and hippocampus of LDLr-/- mice. However, no significant effects of either genotype or minocycline treatment were observed regarding the phagocytic activity of microglia in the PFC and hippocampus. Our results demonstrate that hippocampal microgliosis, microglial morphological changes, and the presence of these glial cells in the perivascular area, but not increased microglial phagocytic activity, are associated with cognitive deficits in a mouse model of FH.

3.
Purinergic Signal ; 19(4): 673-683, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36697868

RESUMEN

Caffeine is one of the main ergogenic resources used in exercise and sports. Previously, we reported the ergogenic mechanism of caffeine through neuronal A2AR antagonism in the central nervous system [1]. We now demonstrate that the striatum rules the ergogenic effects of caffeine through neuroplasticity changes. Thirty-four Swiss (8-10 weeks, 47 ± 1.5 g) and twenty-four C57BL/6J (8-10 weeks, 23.9 ± 0.4 g) adult male mice were studied behaviorly and electrophysiologically using caffeine and energy metabolism was studied in SH-SY5Y cells. Systemic (15 mg/kg, i.p.) or striatal (bilateral, 15 µg) caffeine was psychostimulant in the open field (p < 0.05) and increased grip efficiency (p < 0.05). Caffeine also shifted long-term depression (LTD) to potentiation (LTP) in striatal slices and increased the mitochondrial mass (p < 0.05) and membrane potential (p < 0.05) in SH-SY5Y dopaminergic cells. Our results demonstrate the role of the striatum in the ergogenic effects of caffeine, with changes in neuroplasticity and mitochondrial metabolism.


Asunto(s)
Estimulantes del Sistema Nervioso Central , Neuroblastoma , Sustancias para Mejorar el Rendimiento , Humanos , Masculino , Ratones , Animales , Cafeína/farmacología , Ratones Endogámicos C57BL , Estimulantes del Sistema Nervioso Central/farmacología
4.
Immunol Invest ; 52(7): 796-814, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37665564

RESUMEN

Inflammatory bowel diseases (IBD) cause increased inflammatory signalling and oxidative damage. IBDs are correlated with an increased incidence of brain-related disorders suggesting that the gut-brain-axis exerts a pivotal role in IBD. Butyrate is one of the main microbial metabolites in the colon, and it can cross the blood-brain barrier, directly affecting the brain. We induced ulcerative colitis (UC) in mice utilizing dextran sodium sulfate (DSS) in the drinking water for 7 days. Animals were divided into four groups, receiving water or DSS and treated with saline or 0,066 g/kg of Sodium Butyrate for 7 days. We also used an integrative approach, combining bioinformatics functional network and experimental strategies to understand how butyrate may affect UC. Butyrate was able to attenuate colitis severity and intestinal inflammation. Butyrate protected the colon against oxidative damage in UC and protected the prefrontal cortex from neuroinflammation observed in DSS group. Immunocontent of tight junction proteins Claudin-5 and Occludin were reduced in colon of DSS group mice and butyrate was able to restore to control levels. Occludin and Claudin-5 decrease in DSS group indicate that an intestinal barrier disruption may lead to the increased influx of gut-derived molecules, causing neuroinflammation in the prefrontal cortex, observed by increased IBA-1 marker. The probable protection mechanism of butyrate treatment occurs through NRF2 through Nrf2 and HIF-1α activation and consequent activation of catalase and superoxide dismutase. Our data suggest that systemic inflammation associated with intestinal barrier disruption in UC leads to neuroinflammation in the prefrontal cortex, which was atenuated by butyrate.


Asunto(s)
Colitis Ulcerosa , Enfermedades Inflamatorias del Intestino , Animales , Ratones , Ácido Butírico/uso terapéutico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Enfermedades Neuroinflamatorias , Claudina-5 , Factor 2 Relacionado con NF-E2 , Ocludina , Corteza Prefrontal , Inflamación/tratamiento farmacológico , Modelos Animales de Enfermedad
5.
Metab Brain Dis ; 38(1): 123-135, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35922735

RESUMEN

Nanotechnology is an emerging and expanding technology worldwide. The manipulation of materials on a nanometric scale generates new products with unique properties called nanomaterials. Due to its significant expansion, nanotechnology has been applied in several fields of study, including developing materials for biomedical applications, i.e., nanomedicine. The use of nanomaterials, including nanoparticles, in nanomedicine, is promising and has been associated with pharmacokinetics, bioavailability, and therapeutic advantages. In this regard, it is worth mentioning the Gold Nanoparticles (AuNPs). AuNPs' biomedical application is extensively investigated due to their high biocompatibility, simple preparation, catalytic, and redox properties. Experimental studies have pointed out critical therapeutic actions related to AuNPs in different pathophysiological contexts, mainly due to their anti-inflammatory and antioxidant effects. Thus, in this review, we will discuss the main experimental findings related to the therapeutic properties of AuNPs in metabolic, neurodegenerative diseases, and ultimately brain dysfunctions related to metabolic diseases.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Oro/uso terapéutico , Nanopartículas del Metal/uso terapéutico , Nanomedicina , Encéfalo
6.
Nutr Neurosci ; 25(5): 1026-1040, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33078695

RESUMEN

Obesity is a health problem that has been associated with neuroinflammation, decreased cognitive functions and development of neurodegenerative diseases. Parkinson's disease (PD) is a chronic neurodegenerative condition characterized by motor and non-motor abnormalities, increased brain inflammation, α-synuclein protein aggregation and dopaminergic neuron loss that is associated with decreased levels of tyrosine hydroxylase (TH) in the brain. Diet-induced obesity is a global epidemic and its role as a risk factor for PD is not clear. Herein, we showed that 25 weeks on a high-fat diet (HFD) promotes significant alterations in the nigrostriatal axis of Wistar rats. Obesity induced by HFD exposure caused a reduction in TH levels and increased TH phosphorylation at serine 40 in the ventral tegmental area. These effects were associated with insulin resistance, increased tumor necrosis factor-α levels, oxidative stress, astrogliosis and microglia activation. No difference was detected in the levels of α-synuclein. Obesity also induced impairment of locomotor activity, total mobility and anxiety-related behaviors that were identified in the open-field and light/dark tasks. There were no changes in motor coordination or memory. Together, these data suggest that the reduction of TH levels in the nigrostriatal axis occurs through an α-synuclein-independent pathway and can be attributed to brain inflammation, oxidative/nitrosative stress and metabolic disorders induced by obesity.


Asunto(s)
Encefalitis , Enfermedad de Parkinson , Animales , Encéfalo/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Encefalitis/metabolismo , Enfermedades Neuroinflamatorias , Obesidad/etiología , Obesidad/metabolismo , Estrés Oxidativo , Enfermedad de Parkinson/metabolismo , Ratas , Ratas Wistar , Tirosina 3-Monooxigenasa/metabolismo , alfa-Sinucleína/metabolismo
7.
Nutr Neurosci ; 24(12): 978-988, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31910791

RESUMEN

Although the benefits of moderate intake of red wine in decreasing incidence of cardiovascular diseases associated to hypercholesterolemia are well recognized, there are still widespread misconceptions about its effects on the hypercholesterolemia-related cognitive impairments. Herein we investigated the putative benefits of regular red wine consumption on cognitive performance of low-density lipoprotein receptor knockout (LDLr-/-) mice, an animal model of familial hypercholesterolemia, which display cognitive impairments since early ages. The red wine was diluted into the drinking water to a final concentration of 6% ethanol and was available for 60 days for LDLr-/- mice fed a normal or high-cholesterol diet. The results indicated that moderate red wine consumption did not alter locomotor parameters and liver toxicity. Across multiple cognitive tasks evaluating spatial learning/reference memory and recognition/identification memory, hypercholesterolemic mice drinking red wine performed significantly better than water group, regardless of diet. Additionally, immunofluorescence assays indicated a reduction of astrocyte activation and lectin stain in the hippocampus of LDLr-/- mice under consumption of red wine. These findings demonstrate that the moderate consumption of red wine attenuates short- and long-term memory decline associated with hypercholesterolemia in mice and suggest that it could be through a neurovascular action.


Asunto(s)
Disfunción Cognitiva/etiología , Disfunción Cognitiva/prevención & control , Hipercolesterolemia/complicaciones , Receptores de LDL/fisiología , Vino , Animales , Conducta Animal , Encéfalo/irrigación sanguínea , Colesterol en la Dieta/administración & dosificación , Modelos Animales de Enfermedad , Hipocampo/fisiopatología , Hipercolesterolemia/genética , Hipercolesterolemia/fisiopatología , Hepatopatías Alcohólicas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora , Receptores de LDL/deficiencia , Receptores de LDL/genética
8.
Metab Brain Dis ; 36(7): 1673-1685, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34212298

RESUMEN

Tissue exposure to high levels of tyrosine, which is characteristic of an inborn error of metabolism named Tyrosinemia, is related to severe symptoms, including neurological alterations. The clinical manifestations and pathogenesis of tyrosine neurotoxicity can be recapitulated in experimental models in vivo and in vitro. A widely used experimental model to study brain tyrosine damage is the chronic and acute administration of this amino acid in infant rats. Other research groups and we have extensively studied the pathogenic events in the brain structures of rats exposed to high tyrosine levels. Rats administered acutely and chronically with tyrosine presented decreased and inhibition of the essential metabolism enzymes, e.g., Krebs cycle enzymes and mitochondrial respiratory complexes in the brain structures. These alterations induced by tyrosine toxicity were associated with brain oxidative stress, astrocytes, and, ultimately, cognitive impairments. Notably, in vivo data were corroborated by in vitro studies using cerebral regions homogenates incubated with tyrosine excess. Considering metabolism's importance to brain functioning, we hypothesized that mitochondrial and metabolic dysfunctions are closely related to neurological alterations induced by tyrosine neurotoxicity. Herein, we reviewed the main mechanisms associated with tyrosine neurotoxicity in experimental models, emphasizing the role of mitochondrial dysfunction.


Asunto(s)
Mitocondrias/efectos de los fármacos , Síndromes de Neurotoxicidad/etiología , Tirosina/toxicidad , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Metabolismo Energético/efectos de los fármacos , Humanos , Mitocondrias/fisiología , Ratas
9.
Metab Brain Dis ; 36(1): 185-192, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33034842

RESUMEN

Maple syrup urine disease (MSUD) is characterized by a deficiency in the mitochondrial branched-chain α-keto acid dehydrogenase complex activity and, consequently, accumulation of the branched-chain amino acids and their respective branched-chain α-keto acids in fluids and the tissue. MSUD clinical symptoms include neurological alterations. KIC is considered one of the significant neurotoxic metabolites since its increased plasma concentrations are associated with neurological symptoms. We evaluated the effect of KIC intracerebroventricular (ICV) injection in hippocampal mitochondria function in rats. We also investigated the impact of KIC in cells' metabolic activity (using MTT assay) and reactive species (RS) production in HT-22 cells. For this, thirty-day-old male rats were bilaterally ICV injected with KIC or aCSF. Thus, 1 hour after the administration, animals were euthanized, and the hippocampus was harvested for measured the activities of mitochondrial respiratory chain enzymes and RS production. Furthermore, HT-22 cells were incubated with KIC (1-10 mM) in 6, 12, and 24 h. Mitochondrial complexes activities were reduced, and the formation of RS was increased in the hippocampus of rats after KIC administration. Moreover, KIC reduced the cells' metabolic ability to reduce MTT and increased RS production in hippocampal neurons. Impairment in hippocampal mitochondrial function seems to be involved in the neurotoxicity induced by KIC.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Hipocampo/efectos de los fármacos , Cetoácidos/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Línea Celular , Hipocampo/metabolismo , Masculino , Enfermedad de la Orina de Jarabe de Arce/metabolismo , Ratones , Ratas , Ratas Wistar
10.
Metab Brain Dis ; 36(5): 1057-1067, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33616841

RESUMEN

D-galactose (D-gal) is a carbohydrate widely distributed in regular diets. However, D-gal administration in rodents is associated with behavioral and neurochemical alterations similar to features observed in aging. In this regard, this study aimed to investigate the effects of D-gal exposure, in different periods, in rats' brain regions' activities of creatine kinase (CK) and tricarboxylic acid (TCA) cycle enzymes. Male adult Wistar rats received D-gal (100 mg/kg, gavage) for 1, 2, 4, 6 or 8 weeks. CK and TCA enzymes' activities were evaluated in rats' prefrontal cortex and hippocampus. In general, the results showed an increase in citrate synthase (CS) and succinate dehydrogenase (SDH) activities in animals treated with D-gal compared to the control group in the prefrontal cortex and hippocampus. Also, in the fourth week, the malate dehydrogenase (MD) activity increased in the hippocampus of rats that received D-gal compared to control rats. In addition, we observed an increase in the CK activity in the prefrontal cortex and hippocampus in the first and eighth weeks of treatment in the D-gal group compared to the control group. D-gal administration orally administered modulated TCA cycle enzymes and CK activities in the prefrontal cortex and hippocampus, which were also observed in aging and neurodegenerative diseases. However, more studies using experimental models are necessary to understand better the impact and contribution of these brain metabolic abnormalities associated with D-gal consumption for aging.


Asunto(s)
Encéfalo/efectos de los fármacos , Ciclo del Ácido Cítrico/efectos de los fármacos , Creatina Quinasa/metabolismo , Galactosa/administración & dosificación , Malato Deshidrogenasa/metabolismo , Ácidos Tricarboxílicos/metabolismo , Administración Oral , Animales , Encéfalo/metabolismo , Masculino , Ratas , Ratas Wistar
11.
Metab Brain Dis ; 36(2): 247-254, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33098071

RESUMEN

Maple Syrup Urine Disease (MSUD) is an autosomal recessive inherited disorder that affects the activity of the branched-chainα-keto acid dehydrogenase complex (BCDK). This deficiency on BCDK complex results in the accumulation of branched-chain amino acids (BCAA) leucine, isoleucine, valine, and their corresponding α-keto acids. Epigenetic changes can negatively affect the metabolism of BCAA. These changes are catalyzed by the epigenetic regulatory enzymes, e.g., DNA methyltransferase (DNMT), histone deacetylases (HDAC), and histone acetyltransferases (HAT). However, the impacts of BCAA administration on the activity of epigenetic regulatory enzymes in the brain of MSUD patients are still unknown. In this study, we aimed to demonstrate the impact of BCAA administration on the activity of DNMT, HDAC, and HAT in the brain structures of infant rats, an animal model of MSUD. For that, we administered a BCAA pool to infant rats for 21 days. We demonstrated that BCAA administration significantly increased the DNMT and HDAC activities in the hippocampus and striatum, but not in the cerebral cortex of MSUD infant rats. A positive correlation was observed between HDAC and DNMT activities in the hippocampus and striatum of animals exposed to BCAA injections. Our results showed that the BCAA administration could modulate epigenetic regulatory enzymes, mainly DNMT and HDAC, in the brains of infant rats. Therefore, we suggest that the increase in the activity of DNMT and HDAC in the hippocampus and striatum could partially explain the neurological impairments presented in animal models of MSUD.


Asunto(s)
Aminoácidos de Cadena Ramificada/administración & dosificación , Corteza Cerebral/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Hipocampo/efectos de los fármacos , Enfermedad de la Orina de Jarabe de Arce/metabolismo , Animales , Corteza Cerebral/metabolismo , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Masculino , Ratas , Ratas Wistar
12.
Metab Brain Dis ; 35(6): 905-914, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32297169

RESUMEN

Maple Syrup Urine Disease (MSUD) is an inborn error of metabolism caused by a deficiency of branched α-ketoacid dehydrogenase complex (BCKDC) activity. Branched-chain amino acids (BCAA) accumulation is, at least in part, responsible for neurological disturbances characteristic of this metabolic disorder. Experimental studies demonstrated that high levels of BCAA induce brain oxidative stress. Considering that many antioxidants are obtained from the diet, the dietary restriction in MSUD patients probably produce deficiency of vitamins and micronutrients involved in antioxidant defenses. Supplementation with synthetic melatonin has been used to prevention and treatment of pathological conditions, including brain diseases. In this study, we aimed at investigating the potential neuroprotective effect of melatonin treatment in a MSUD experimental model. Infant rats (7 day old) received twice daily subcutaneous injections of a BCAA pool (0.21472 g/kg, 190 mmol/L leucine, 59 mmol/L isoleucine and 69 mmol/L valine in saline solution (15.8 µL/g per weight/injection) or saline alone, and supplemented with melatonin (10 mg/kg, intraperitoneal) for 21 days. Oxidative stress parameters, i.e. antioxidant enzyme activity, reactive species production and damage to lipids and proteins, were assessed in the cerebral cortex, hippocampus and striatum at twenty-eight days of age. In addition, the damage to blood cell DNA was evaluated. The chronic administration of BCAA pool in infant rats induced significant oxidative stress (p < 0.05) - such as oxidation of lipids and proteins, imbalance in antioxidant enzymes activities - damages in DNA (p < 0.05) and in brain structures (cerebral cortex, hippocampus and striatum). Notably, melatonin supplementation was able to ameliorate the oxidative (p < 0.05) and antioxidant (p < 0.05) parameters in the brain and blood of the rat model of MSUD. Our results show that melatonin could be a promising therapeutic agent for MSUD.


Asunto(s)
Aminoácidos de Cadena Ramificada/toxicidad , Antioxidantes/uso terapéutico , Daño del ADN/efectos de los fármacos , Enfermedad de la Orina de Jarabe de Arce/tratamiento farmacológico , Melatonina/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Animales , Antioxidantes/farmacología , Daño del ADN/fisiología , Masculino , Enfermedad de la Orina de Jarabe de Arce/inducido químicamente , Enfermedad de la Orina de Jarabe de Arce/metabolismo , Melatonina/farmacología , Estrés Oxidativo/fisiología , Ratas , Ratas Wistar
13.
Metab Brain Dis ; 35(2): 295-303, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31828693

RESUMEN

Tyrosinemia type II is an autosomal recessive inborn error of metabolism caused by hepatic cytosolic tyrosine aminotransferase deficiency. Importantly, this disease is associated with neurological and developmental abnormalities in many patients. Considering that the mechanisms underlying neurological dysfunction in hypertyrosinemic patients are poorly understood, in the present work we investigated the levels of cytokines - tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), IL-6 and IL-10 - in cerebellum, hippocampus, striatum of young rats exposed to chronic administration of L-tyrosine. In addition, we also investigated the impact of the supplementation with Omega-3 fatty acids (n-3 PUFA) on the rodent model of Tyrosinemia. Notably, previous study demonstrated an association between L-tyrosine toxicity and n-3 PUFA deficiency. Our results showed a significant increase in the levels of pro- and anti-inflammatory cytokines in brain structures when animals were administered with L-tyrosine. Cerebral cortex and striatum seem to be more susceptible to the inflammation induced by tyrosine toxicity. Importantly, n-3 PUFA supplementation attenuated the alterations on cytokines levels induced by tyrosine exposure in brain regions of infant rats. In conclusion, the brain inflammation is also an important process related to tyrosine neurotoxicity observed in the experimental model of Tyrosinemia. Finally, n-3 PUFA supplementation could be considered as a potential neuroprotective adjunctive therapy for Tyrosinemias, especially type II.


Asunto(s)
Suplementos Dietéticos , Encefalitis/inducido químicamente , Encefalitis/tratamiento farmacológico , Ácidos Grasos Omega-3/administración & dosificación , Mediadores de Inflamación/antagonistas & inhibidores , Tirosina/toxicidad , Animales , Animales Recién Nacidos , Esquema de Medicación , Encefalitis/metabolismo , Mediadores de Inflamación/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Ratas , Ratas Wistar , Tirosina/administración & dosificación
14.
Metab Brain Dis ; 35(1): 193-200, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31705440

RESUMEN

Tyrosinemia type II is a genetic disorder characterized by elevated blood levels of the amino acid tyrosine caused by the deficiency of tyrosine aminotransferase enzyme, resulting in neurologic and developmental difficulties in the patients. Although neurological sequelae are common in Tyrosinemia type II patients, the mechanisms involved are still poorly understood. The oxidative stress appears to be, at least in part, responsible for neurological complication in this inborn error metabolism. We observed that an acute injection of tyrosine in rats caused a massive oxidative stress in different brain structures. The glutathione system and superoxide dismutase enzyme are relevant antioxidant strategies of the cells and tissues, including in the brain. Other important point is the strong relation between oxidative damage and inflammatory events. Herein, we investigated the effects of chronic administration of tyrosine in the hippocampus of young rats, with emphasis in the activity of GSH related enzymes and superoxide dismutase enzyme, and the astrocytosis. We observed that rats exposed to high levels of tyrosine presented an increased content of tyrosine, which was associated with an increment in the activity of glutathione peroxidase and glutathione reductase as well as with a diminished activity of superoxide dismutase. This antioxidant imbalance was accompanied by enhanced glial fibrillary acidic protein immunoreactivity, a marker of astrocytes, in the brain area studied. In conclusion, hippocampus astrogliosis is also a characteristic of brain alteration in Tyrosinemia. In addition, the chronic exposition to high levels of tyrosine is associated with an alteration in the activity of fundamental antioxidant enzymes.


Asunto(s)
Antioxidantes/metabolismo , Astrocitos/metabolismo , Gliosis/metabolismo , Hipocampo/metabolismo , Tirosina/metabolismo , Tirosina/toxicidad , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Astrocitos/patología , Esquema de Medicación , Gliosis/inducido químicamente , Gliosis/patología , Hipocampo/efectos de los fármacos , Hipocampo/patología , Masculino , Ratas , Ratas Wistar , Tirosina/administración & dosificación
15.
Exp Physiol ; 104(3): 306-321, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30578638

RESUMEN

NEW FINDINGS: What is the central question of this study? What are the temporal responses of mitochondrial respiration and mitochondrial responsivity to insulin in soleus muscle fibres from mice during the development of obesity and insulin resistance? What is the main finding and its importance? Short- and long-term feeding with a high-fat diet markedly reduced soleus mitochondrial respiration and mitochondrial responsivity to insulin before any change in glycogen synthesis. Muscle glycogen synthesis and whole-body insulin resistance were present after 14 and 28 days, respectively. Our findings highlight the plasticity of mitochondria during the development of obesity and insulin resistance. ABSTRACT: Recently, significant attention has been given to the role of muscle mitochondrial function in the development of insulin resistance associated with obesity. Our aim was to investigate temporal alterations in mitochondrial respiration, H2 O2 emission and mitochondrial responsivity to insulin in permeabilized skeletal muscle fibres during the development of obesity in mice. Male Swiss mice (5-6 weeks old) were fed with a high-fat diet (60% calories from fat) or standard diet for 7, 14 or 28 days to induce obesity and insulin resistance. Diet-induced obese (DIO) mice presented with reduced glucose tolerance and hyperinsulinaemia after 7 days of high-fat diet. After 14 days, the expected increase in muscle glycogen content after systemic injection of glucose and insulin was not observed in DIO mice. At 28 days, blood glucose decay after insulin injection was significantly impaired. Complex I (pyruvate + malate) and II (succinate)-linked respiration and oxidative phosphorylation (ADP) were decreased after 7 days of high-fat diet and remained low in DIO mice after 14 and 28 days of treatment. Moreover, mitochondria from DIO mice were incapable of increasing respiratory coupling and ADP responsivity after insulin stimulation in all observed periods. Markers of mitochondrial content were reduced only after 28 days of treatment. The mitochondrial H2 O2 emission profile varied during the time course of DIO, with a reduction of H2 O2 emission in the early stages of DIO and an increased emission after 28 days of treatment. Our data demonstrate that DIO promotes transitory alterations in mitochondrial physiology during the early and late stages of insulin resistance related to obesity.


Asunto(s)
Respiración de la Célula/efectos de los fármacos , Insulina/farmacología , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Obesidad/fisiopatología , Descanso/fisiología , Animales , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Dieta Alta en Grasa/efectos adversos , Grasas de la Dieta/metabolismo , Glucosa/metabolismo , Glucógeno/metabolismo , Resistencia a la Insulina/fisiología , Masculino , Ratones , Mitocondrias/metabolismo , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Fosforilación Oxidativa/efectos de los fármacos
16.
Metab Brain Dis ; 34(4): 1207-1219, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30949952

RESUMEN

Deficiency of hepatic enzyme tyrosine aminotransferase characterizes the innate error of autosomal recessive disease Tyrosinemia Type II. Patients may develop neurological and developmental difficulties due to high levels of the amino acid tyrosine in the body. Mechanisms underlying the neurological dysfunction in patients are poorly known. Importantly, Tyrosinemia patients have deficient Omega-3 fatty acids (n-3 PUFA). Here, we investigated the possible neuroprotective effect of the treatment with n-3 PUFA in the alterations caused by chronic administration of L-tyrosine on important parameters of energetic metabolism and oxidative stress in the hippocampus, striatum and cerebral cortex of developing rats. Chronic administration of L-tyrosine causes a decrease in the citrate synthase (CS) activity in the hippocampus and cerebral cortex, as well as in the succinate dehydrogenase (SDH) and isocitrate dehydrogenase (IDH) activities, and an increase in the α-ketoglutarate dehydrogenase activity in the hippocampus. Moreover, in the striatum, L-tyrosine administration caused a decrease in the activities of CS, SDH, creatine kinase, and complexes I, II-III and IV of the mitochondrial respiratory chain. We also observed that the high levels of L-tyrosine are related to oxidative stress in the brain. Notably, supplementation of n-3 PUFA prevented the majority of the modifications caused by the chronic administration of L-tyrosine in the cerebral enzyme activities, as well as ameliorated the oxidative stress in the brain regions of rats. These results indicate a possible neuroprotective and antioxidant role for n-3 PUFA and may represent a new therapeutic approach and potential adjuvant therapy to Tyrosinemia Type II individuals.


Asunto(s)
Encéfalo/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Ácidos Grasos Omega-3/farmacología , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Tirosina/farmacología , Animales , Aromatasa/metabolismo , Encéfalo/metabolismo , Masculino , Mitocondrias/metabolismo , Ratas , Ratas Wistar
17.
Neurochem Res ; 43(2): 387-396, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29134401

RESUMEN

The contribution of oxidative stress to the pathophysiology of depression has been described in numerous studies. Particularly, an increased production of reactive oxygen species (ROS) caused by mitochondrial dysfunction can lead to neuronal cell death. Human neuroblastoma SH-SY5Y cells were used to investigate the neuroprotective effect of the antidepressant duloxetine against rotenone-induced oxidative stress. SH-SY5Y cells were pretreated with duloxetine (1-5 µM) for 24 h followed by a 24-h rotenone exposure (10 µM). The phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) inhibitor LY294002 (10 µM) and the heme oxygenase 1 (HO-1) inhibitor zinc protoporphyrin IX-ZnPP (5 µM) were added to cultures 1 h prior duloxetine treatments. After treatments cell viability and ROS generation were assessed. NF-E2-related factor-2 (Nrf2) nuclear translocation was assessed by immunofluorescent staining after 4 and 8 h of duloxetine incubation. Furthermore, the Nrf2 and HO-1 mRNA expression was carried out after 4-48 h of duloxetine treatment by qRT-PCR. Duloxetine pretreatment antagonized rotenone-induced overproduction of ROS and cell death in SH-SY5Y cells. In addition, a 1-h pretreatment with LY294002 abolished duloxetine's protective effect. Duloxetine also induced nuclear translocation of the Nrf2 and the expression of its target gene, HO-1. Finally, the HO-1 inhibitor, ZnPP, suppressed the duloxetine protective effect. Overall, these results indicate that the mechanism of duloxetine neuroprotective action against oxidative stress and cell death might rely on the Akt/Nrf2/HO-1 pathways.


Asunto(s)
Muerte Celular/efectos de los fármacos , Clorhidrato de Duloxetina/farmacología , Neuroblastoma/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Rotenona/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Hemo-Oxigenasa 1/metabolismo , Humanos , Fármacos Neuroprotectores/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
18.
Arch Toxicol ; 90(3): 647-60, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25618550

RESUMEN

The organophosphorus (OP) pesticide malathion is a neurotoxic compound whose acute toxicity is primarily caused by the inhibition of acetylcholinesterase (AChE), leading to cholinergic syndrome-related symptoms. Some lines of evidence indicate that long-term exposure to low levels of OP may produce neuropsychiatric and/or neurobehavioral signs that do not necessarily involve the AChE inhibition. This study evaluated the effects of a repeated (15-day period) and low-dose malathion exposure on spatial memory and discrimination (object location task), as well as on biochemical parameters in the hippocampus of mice [AChE and mitochondrial chain complexes activities; levels of proapoptotic proteins (Bax and Bak) and cholinergic neuronal and astroglial markers (ChAT and GFAP, respectively)]. Malathion treatments (30 and 100 mg/kg, s.c.) did not affect the body weight of animals and caused no evident signs of cholinergic toxicity throughout the treatment, although the highest dose (100 mg/kg) was associated with inhibition of AChE activity. Malathion-exposed animals showed a significant impairment on spatial memory and discrimination, which was correlated with a decrease in the mitochondrial complex I activity in the hippocampus. Moreover, malathion increased the levels of proapoptotic proteins and induced astroglial activation. The results show that long-term malathion exposure, at a dose that does not affect hippocampal AChE activity (30 mg/kg), caused impaired spatial memory and discrimination in mice that was related to hippocampal mitochondrial dysfunctional, astrogliosis and apoptosis. When extrapolated to humans, such results shed light on noncholinergic mechanisms likely related to the neurobehavioral and cognitive deficits observed in individuals chronically exposed to this pesticide.


Asunto(s)
Astrocitos/efectos de los fármacos , Trastornos del Conocimiento/inducido químicamente , Hipocampo/efectos de los fármacos , Insecticidas/toxicidad , Malatión/toxicidad , Animales , Apoptosis/efectos de los fármacos , Astrocitos/patología , Inhibidores de la Colinesterasa/toxicidad , Relación Dosis-Respuesta a Droga , Hipocampo/patología , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Memoria Espacial/efectos de los fármacos , Pruebas de Toxicidad Crónica/métodos
19.
J Neural Transm (Vienna) ; 121(4): 415-26, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24166183

RESUMEN

Epidemiological studies have indicated hypercholesterolemia in midlife as a risk factor for dementia in later life, bringing cholesterol to the forefront of Alzheimer's disease research. Herein, we modeled mild hypercholesterolemia in mice to evaluate biochemical and behavioral alterations linked to hypercholesterolemia. Swiss mice were fed a high fat/cholesterol diet (20 % fat and 1.25 % cholesterol) for an 8-week period (from 12 to 18 weeks old) and were tested on the object location, forced swimming and elevated plus-maze tasks. We also investigated hypercholesterolemia-induced changes on acetylcholinesterase (AChE) activity, oxidative damage, amyloid precursor protein (APP) processing and blood brain barrier (BBB) integrity within the prefrontal cortex and hippocampus. It was found that increased AChE activity within the prefrontal cortex and hippocampus is an early event associated with hypercholesterolemia-induced short-term memory impairments. We observed no signs of antioxidant imbalance and/or oxidative damage or changes in cortical and hippocampal densities of beta-site amyloid precursor protein-cleaving enzyme 1 and aquaporin-4, biomarkers of APP processing and BBB integrity, respectively. In addition, we treated SH-SY5Y human neuroblastoma cells with low-density lipoprotein (LDL) cholesterol in an attempt to manipulate cell cholesterol content. Notably, LDL cholesterol increased in a dose-dependent manner the activity of AChE in SH-SY5Y cells. The present findings provide new evidence that increased AChE activity within the prefrontal cortex and hippocampus is an early event associated with hypercholesterolemia-induced cognitive impairments.


Asunto(s)
Acetilcolinesterasa/metabolismo , Hipercolesterolemia/complicaciones , Trastornos de la Memoria/etiología , Trastornos de la Memoria/metabolismo , Regulación hacia Arriba/fisiología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Análisis de Varianza , Animales , Acuaporina 4/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Glucemia/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Glutatión/metabolismo , Glutatión Reductasa/metabolismo , Hipocampo/enzimología , Lípidos/sangre , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Neuroblastoma/patología , Corteza Prefrontal/enzimología , Natación/psicología , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
20.
Ageing Res Rev ; 93: 102149, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38056504

RESUMEN

Familial hypercholesterolemia (FH) is a metabolic condition caused mainly by a mutation in the low-density lipoprotein (LDL) receptor gene (LDLR), which is highly prevalent in the population. Besides being an important causative factor of cardiovascular diseases, FH has been considered an early risk factor for Alzheimer's disease. Cognitive and emotional behavioral impairments in LDL receptor knockout (LDLr-/-) mice are associated with neuroinflammation, blood-brain barrier dysfunction, impaired neurogenesis, brain oxidative stress, and mitochondrial dysfunction. Notably, today, LDLr-/- mice, a widely used animal model for studying cardiovascular diseases and atherosclerosis, are also considered an interesting tool for studying dementia. Here, we reviewed the main findings in LDLr-/- mice regarding the relationship between FH and brain dysfunctions and dementia development.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Cardiovasculares , Hipercolesterolemia , Hiperlipoproteinemia Tipo II , Humanos , Animales , Ratones , Hipercolesterolemia/epidemiología , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Enfermedades Cardiovasculares/genética , Factores de Riesgo , Hiperlipoproteinemia Tipo II/complicaciones , Hiperlipoproteinemia Tipo II/genética , Encéfalo/metabolismo , Cognición , Factores de Riesgo de Enfermedad Cardiaca
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA